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Abstract

Wearable devices that measure Heart Rate (HR) using Photoplethysmography (PPG),
such as smartwatches or fitness bands, have become increasingly popular in recent
years. However, the accuracy of PPG-based HR measurements can be affected by a
number of factors. This thesis investigates the accuracy and validity of PPG-based
HR measurements in comparison to gold standard Elektrocardiogram (ECG) readings.
First background literature is summarized to investigate the current state of the art
in PPG-based HR measurement. Then, a real world data set is analyzed to assess the
accuracy of PPG-based HR measurements in a real-world setting.

The first part of the thesis shows that PPG-based HR measurements can be inaccurate,
particularly at high exercise intensities. To address this issue, a Linear Regression
model and two Deep Learning models have been developed to predict the measurement
errors that occur based on the data stream from the wearable alone. The results
show that a Deep Learning model based on a Convolutional Neural Network (CNN)
outperforms the other models. The model is able to reliably detect large measurement
errors and therefore it is possible to develop a warning system to inform the end user
of the wearable when those large deviations from the gold standard occur.

Keywords: wearable devices, photoplethysmography, PPG, heart rate, HR, electro-
cardiogram, ECG, prediction, accuracy, validity, deep learning, CNN, transformer,
warning system, machine learning, artificial intelligence, human-data interaction,
digital health, smartwatch, fitness band
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1 Introduction

Monitoring HR using PPG has attracted much attention with the advent of wearable
devices such as smartwatches and smartbands. Previously, HR had to be measured
using ECG sensors that were attached to the chest and required ground and reference
sensors [137]. In recent years, HR measurement using the PPG method has taken
off. It is less expensive, easier to use, and does not require ground and reference
sensors [93]. PPG is easily integrated into smartwatches and wristbands, providing
a non-invasive and indirect estimation of HR [9]. These so-called wearables can be
unobtrusively attached to various body sites, such as an earlobe, fingertip, or wrist.

Wearables have gained popularity in both hobby and professional sports as well
as in the health and medicine industry. Health professionals enjoy the ability to
use them to monitor patients individual internal response during recovery, post-op,
sleep, or even medication intake [112]. The use of wearables has been increasing
in recent years and was the top fitness trend in 2022 [154]. In this context, Patel
et al. [116] investigates whether a person’s health behavior changes as a result of
using wearable devices. The study found that in some cases it does, and wearable
devices can effectively promote health behaviors. Wearable devices can help people
increase their physical activity and can also be a helpful way to track individual
progress to stay motivated. Furthermore, wearables can provide feedback that helps
people identify areas where they can make changes. Thus, wearable devices can be
a significant way to improve health by increasing physical activity or by otherwise
accompanying physical activity.

The benefits of regular physical activity are well known and well documented.
Physical activity is an important modifiable risk factor for a number of chronic
diseases (cardiovascular, stroke, type 2 diabetes, cancer, obesity) and all-cause
mortality. Furthermore, physical activity can improve mental health and quality of
life. [162]

Physical inactivity, in turn, is the leading cause of Cardiovascular Disease (CVD).
CVDs are a group of diseases that affect the heart and blood vessels, affecting it
so that it cannot perform normal functions. CVDs are the leading cause of death
worldwide. An estimated 17.9 million people die every year from CVD, accounting for
32% of all deaths worldwide. Early diagnosis of CVD is essential to improve patient
outcomes. HR is an important indicator of cardiovascular health as having a high
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HR can increase the risk of heart attack, stroke and CVD. Therefore, it is important
to monitor the HR to detect irregularities at an early stage in order to change the
lifestyle accordingly. Early diagnosis is very significant for treatment, as it is most
effective in the early stages of the disease. By monitoring HR, wearables can help
detect early signs of CVD. [5, 39]

In addition to monitoring HR for prophylaxis or early detection of disease, HR is
commonly used for monitoring cardiovascular exercise intensity. However, previous
studies have shown that HR measurements can be inaccurate, particularly at high
exercise intensities. This is because HR is sensitive to body movements and other
factors, such as skin temperature and hydration status. [33, 57, 95, 102]. The
inaccuracy of HR measurements can have implications for training prescription. For
example, if a person’s HR is measured incorrectly, they may be prescribed an exercise
intensity that is either too high or too low. This could lead to injuries or suboptimal
training results [160].

Studies and analyses are available that investigate the accuracy between the ECG
as gold standard and PPG measurements [27, 58, 68, 102, 153, 160]. The growing
interest in wearables and the ever-increasing research interest in them is bringing
rapid growth in data. This provides an opportunity to apply Machine Learning or
Deep Learning techniques to extract insights from such datasets.

To date, frequently occurring divergences in PPG-based HR measures from wearables
are known, but there is no way to report this divergence back to the user. There is
only a very limited amount of work that actually perform predictions for continuous
values of physiological data, such as HR [97]. However, recent advances in Artificial
Intelligence (AI) are revolutionizing the healthcare industry. One of the most promis-
ing applications of AI in healthcare is to improve the utility and reliablity of wearable
sensors. The use of AI and wearable sensors are still in their infancy, however by
providing reliably predicted offsets, they have the potential to revolutionize the
healthcare industry by using this predicted offsets to implement a practical warning
system and communicate those to the end user.

The goal of this thesis is to not only investigate the validity and verify the accuracy
of the wearable, but also to use Deep Learning techniques to estimate the current
measurement error and provide this information to the user. Not only the detection
of a measurement error but also the communication to the end user is an important
point here since this human-data interaction is of growing relevance in the field of
digital health. [25]

The thesis is divided as several sections: Chapter 2 gives the theoretical background
on the topics that play an important role in this thesis. Chapter 3 deals with
the investigation of the validity of wearables, where first a literature research was
conducted and then a real data set was evaluated. An important part of this thesis
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was the development of different models to predict HR data, which is explained in
Chapter 4. In this chapter, first the latest findings in the literature are shown, then
the applied models are explained in more detail including the description of the
training of the models and finally the results are presented. Finally, a discussion
of the results found as well as possibilities for further research complete the thesis.
This can bridge the gap that currently exists between the practical application of
HR measurements using PPG and the associated measurement errors and reduced
validity as a feedback to the end user.
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2 Theoretical Background

In the following chapter, the theoretical background of HR, time series, Artificial
Neural Network (ANN), especially CNN and Transformer, Linear Regression and
Human-Data-Interaction are briefly presented, since they play an important role
in the context of this master thesis. The state-of-the-art literature follows later in
Chapter 3.1 and 4.1.

2.1 Heart Rate

All cells in the body, in order to be able to guarantee the maintenance of metabolism
and thus the maintenance of life, must be supplied with oxygen. This happens
through the transport of oxygen-enriched blood, which is pumped through the body
by the heart. The HR indicates how often the heart chambers contract and relax
within one minute [112].

2.1.1 The Regulation of Heart Rate

HR is tightly controlled by several biological systems through various feedback loops
that ultimately regulate and maintain energy homeostasis [2]. Without these control
mechanisms, the HR would be limited to an intrinsic value of 100 to 110 Beats per
Minute (bpm), therefore, adapting poorly to changing energy demands [69]. The
heartbeat regulation is assisted by the Autonomic Nervous System (ANS), which
attempts to minimize the energy expended to ensure a heartbeat, while also being
able to meet the immediate needs from the external environment [109]. The ANS
is stimulated, in part, by perceived stressors in the external environment. These
include physical stressors (increased oxygen demand due to increased metabolism
exempli gratia (e.g.) through exercise), environmental stressors (temperature changes,
altitude changes, noise, et cetera (etc)) or psychological stressors (anxiety, fear, etc)
[22, 135]. In addition, a wide variety of internal physiological conditions such as
fluid intake, nutrient availability, hormonal sensitivity and fatigue can alter the
sympathetic response [30, 61, 83, 156].

4



2.1. HEART RATE

The ANS regulates the heartbeat via the autonomic nerves and its two branches: the
sympathetic and parasympathetic nervous systems [130]. While the sympathetic
branch initiates the release of a cascade of hormones, such as norepinephrine, which
leads to an increase in HR, the parasympathetic branch plays the main role. It restores
homeostasis after periods of stress and provides energy for cell repair, regeneration
and adaptation [51, p. 177-78][155]. Together, the sympathetic and parasympathetic
systems drive the body’s adaptive mechanisms that allow it to be better equipped
to cope and perform in different environments. The relationship between the two
branches and their responses to acute and chronic stress play a critical role in overall
health, performance and risk of injury [146, 166]. Thus, monitoring changes in HR in
different contexts is the most common and proven method to observe this balance.
Insights can be gained into health and even athletic performance with the goal of
optimizing it [22, 118, 120, 159]. Heart rate can be viewed as the sum of the body’s
responses to physical and mental stress [131].

2.1.2 The Measurement of Heart Rate

The use of HR measurements began with the introduction of the first wireless ECG
chest strap in 1983 by Polar Electro [52]. Since then, the need for HR measurements
has become more prevalent. The advent of a variety of mobile, low-cost applications
has led to accelerated and improved research and development of these measurement
devices [50, 164]. Monitoring HR has several advantages, including ease of recording,
noninvasive nature and cost efficient. In addition, it can be measured over multiple
time periods and physiological conditions [51, p. 178].

With the proliferation of wearable sensors, healthcare and clinical examination
procedures have seen further improvements [59]. Health monitoring systems can
monitor a patient’s cardiovascular status at home and provide recommendations
to both the patient and healthcare provider [70]. Rapid technological advances
in this field have now brought vast amounts of health-related data. These data
play an important role in early and accurate detection and diagnosis of diseases for
personalized treatment and prognosis assessment [112]. For example, according to
the World Health Organization (WHO) [39], high HR increases the risk of death, heart
disease and cardiovascular disease. Monitoring HR is therefore essential to detect
irregularities early in HR in order to counteract health problems at an early stage.
The earlier heart disease can be detected and treated, the better, since treatments
are most effective in the early stages [5].

Measuring HR can be done using either an ECG or a PPG sensor. In 1895, Dr.
Willhelm Einhoven measured heart activity for the first time using an electrical
signal and was awarded the Nobel Prize in 1924. [51, p. 178]. Today, the ECG is one
of the most powerful diagnostic tools in modern medicine. [72].
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2.1. HEART RATE

An ECG consists of a linear recording of electrical activity of the heart. For each
cardiac cycle, an atrial depolarization wave (P wave), a ventricular depolarization
wave (QRS complex), and a ventricular repolarization wave (T wave) are recorded.
In a normal rhythm, the sequence is always P-QRS-T, which can be seen in Figure
2.1. The intervals between the waves in a cycle are variable, depending on HR and
rhythm. The theory behind an ECG recording is that the ECG is an expression of
the electro-ionic changes that occur during depolarization and repolarization of the
heart muscle. In both phases, electrical charges and currents are formed in the heart
muscle and can be measured with the help of sensors. [35].

Figure 2.1: The P-QRS-T complex of a normal ECG wave. Adapted from Zhang
([174]

In contrast, PPG detects blood volume changes in the tissue’s microvascular bed
[28]. The basic form includes two components: a light source to illuminate the tissue
and a photodetector to measure the small variations in the intensity of the light
associated with the changes in blood flow. The main factors that can affect the
amount of light received by the photodetector are blood volume, blood vessel wall
motion and red blood cell orientation [6]. PPG signals are optically detected by pulse
oximeters. The pulse oximeter illuminates the wearer’s skin with a Light-Emitting
Diode (LED). As a result of reseach conducted over the last decades, primarily green
light is used, which has a shorter wavelength compared to red or infrared. Thus,
large intensity variations can be generated in cardiac modulation and it provides
better Signal-to-Noise Ratio (SNR) [94, 176]. The photodetector then measures the
intensity changes of the light reflected from the skin. This produces a PPG signal
[6, 71]. In addition, a reflective system, in which the LED and photodetector are
on the same side, is preferable because it provides more comfort to the user [148].
The periodicity of the PPG signal corresponds to the heart rhythm, so HR can be
estimated from this signal (Fig. 2.2) [176]. The pulse can be divided into anacrotic
and catacrotic phases. The anacrotic phase is the rising part of the signal, and the
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2.1. HEART RATE

catacrotic phase is the falling part. The first phase mainly involves the systole1 of
the heartbeat, the second phase involves the diastole2 as well as the wave reflections
from the periphery [6].

Figure 2.2: The PPG signal compared to the corresponding ECG recording of the HR.
Adapted from Allen et al. [6].

In addition to measuring HR, PPG technology allows the measurement of HR variability,
oxygen saturation, blood pressure, cardiac output, assessment of autonomic function,
and also for detection of peripheral vascular diseases. This success is possible, even
though the properties of the PPG waveform are not fully understood [6].

PPG signals can be recorded inconspicuously at various body sites, e.g., the earlobe,
fingertip, or wrist [5, 9]. However, due to the slight distance between the sensor and
the skin surface, the measurements can be contaminated by movements, called Motion
Artifact (MA). These contaminations can also be caused by abnormal blood pressure
changes, which makes accurate HR estimation very difficult, especially during intense
exercise [5, 7, 46, 176]. The wrist can cause much stronger and complicated motion
artifacts, compared to fingertips and earlobes, due to higher flexibility. However, this
position facilitates the design of wearable devices and maximizes usability; therefore,
the development of powerful algorithms for monitoring and validation for PPG signals
are of great value [176]. Figure 2.3 shows examples for different types of MA caused
by different reasons.

1During systole, the heart contracts, thereby pumping blood into the systemic circulation.
2In diastole, the heart relaxes and blood can flow from the veins back into the heart.
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2.2. TIME SERIES

(a) gross movement or pulling on
PPG probe cable

(b) tremor

(c) coughing (d) changes in breathing pattern (e.g.
yawning)

Figure 2.3: Examples of different types of MA on index finger. Adapted from Allen
et al. [6]

2.2 Time Series

A time series is an ordered sequence of real-value variables and represents a collection
of chronological observations. Values are collected from measurements made at
uniformly distributed time points at a given rate. A time series is thus a set of
contiguous time points which can be either univariate or multivariate. Shumway et
al. [138] define time series as "a collection of random variables indexed according to
the temporal order of their occurrence".

A univariate time series

X = [x1, x2, ..., xT ]

is an ordered set of real values. The length of X is equal to the number of real values
T.

An m-dimensional multivariate time series

X = [X1, X2, ..., XM ]

consists of M distinct univariate time series with Xi ∈ RT [49].

A time series represents a collection of chronological observations. Big data size,
high dimensionality and continuous updating are characteristics of time series data.
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2.3. LINEAR REGRESSION

These data are always considered as a whole rather than as individual numerical
fields because of their numerical and continuous nature [53].

2.3 Linear Regression

A basic method for predicting the future from past data is Linear Regression. Linear
Regression is a statistical technique that examines and models the relationship
between variables. It is used in many fields, including engineering, physical and
chemical sciences and even life and biological sciences. It is perhaps the most
widely used statistical technique. Regression is used for data description, parameter
estimation, prediction and estimation, and control, among other applications. [127]

The following statements are based primarily on Montgomery et al. [134] and Rencher
et al. [127].

Linear Regression is distinguished between different models. In all models, X is
referred to as the independent variable, predictor, or regressor variable, and y is
referred to as the dependent variable or response variable.

When only one regressor variable is included, it is referred to as a Simple Linear
Regression.

y = β0 + β1x + ϵ (2.1)

The equation 2.1 describes a linear regression model, where the intercept β0 and
slope β1 are unknown constants and are called regression coefficients. The slope
is the change in the mean of the distribution of y caused by a one-unit change in
x. ϵ describes the error term of the model, which represents random fluctuations,
measurement errors or the effect of external factors.

For n observations, the Simple Linear Regression model according to 2.1 can be
written as follows:

yi = β0 + β1xi + ϵi, i = 1, 2, ..., n (2.2)
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2.3. LINEAR REGRESSION

In this context, ’simple’ means that there is only one prediction variable and ’linear’
means that the model is linear in β0 and β1. In addition, the following assumptions
are made:

1. E(ϵi) = 0 for all i = 1, 2, ..., n, or, equivelantly, E(yi) = β0 + β1xi.

2. var(ϵi) = σ2 for all i = 1, 2, ..., n, or, equivelantly, var(yi) = σ2.

3. cov(ϵi, ϵj) = 0 for all i ̸= j, or, equivelantly, cov(yi, yj) = 0.

Assumption 1 states that yi depends only on xi and all other variations in yi are
random. Assumption 2 states that the variance of ϵ or y does not depend on the
values of xi (=homoscedasticity). Assumption 3 states that ϵ or the y variables are
not correlated with each other.

The estimated model can then be used to draw conclusions such as confidence
intervals or hypothesis tests or to predict the value y for new values x.

The least squares method is used to estimate β0 and β1. This involves looking for
values that minimize the sum of the squares of the deviations (yi − ŷi) of the n
observed values (yi) from their predicted values (ŷi = β0 + β1x1).

ϵ̂′ϵ̂ =
n∑

i=1
(yi − ŷi)2 =

n∑
i=1

(yi − β̂0 − ˆβ1xi)2 (2.3)

When a regression model contains more than one regressor variable, it is called a
Multiple Linear Regression (MLR).

y = β0 + β1x1 + β2x2 + ... + βkxk + ϵ (2.4)

The model 2.3 is a Multiple Linear Regression model with k regressors, where
βj, j = 0, ..., k are the regression coefficients. This model describes a hyperplane in a
k-dimensional space. The parameter βj describes the expected change in y per unit
change in xj when all other regression variables xi, i ̸= j remain constant.
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2.3. LINEAR REGRESSION

In the Multiple Linear Regression model, the assumptions for ϵ and yi remain
essentially the same as for Simple Linear Regression:

1. E(ϵi) = 0 for all i = 1, 2, ..., n, or, equivelantly, E(yi) = β0 + β1xi1 + β2xi2 +
... + βkxik.

2. var(ϵi) = σ2 for all i = 1, 2, ..., n, or, equivelantly, var(yi) = σ2.

3. cov(ϵi, ϵj) = 0 for all i ̸= j, or, equivelantly, cov(yi, yj) = 0.

For n observations, the above formula is as follows:
y1 = β0 + β1x11 + β2x12 + ... + βkx1k + ϵ1 (2.5)
y2 = β0 + β1x21 + β2x22 + ... + βkx2k + ϵ2

...
yn = β0 + β1xn1 + β2xn2 + ... + βkxnk + ϵn

These n formulas can also be written as a matrix:


y1
y2
...

yn

 =


1 x11 x12 ... x1k

1 x21 x22 ... x2k
... ... ... ...
1 xn1 xn2 ... xnk




β0
β1
...

βk

 +


ϵ0
ϵ1
...

ϵn

 (2.6)

or as
y = Xβ + ϵ (2.7)

Both Simple Linear Regression and Multiple Linear Regression take the basic as-
sumption that the relationship between variables is linear. However, if the functional
relationship of the variables x and y is not linear, then both models have difficulty
providing good estimates and models. In this case, Polynomial Regression (PR)
can be used since complex nonlinear relationships can be well modeled by polynomials
over relatively small ranges of x-values.

Polynomial Regression models can contain either one variable (2.8) or multiple
variables (2.9). Here k describes the order of the polynomial regression.

y = β0 + β1x1 + β2x
k
2 + ϵ (2.8)

y = β0 + β1x1 + β2x2 + β11x
2
1 + β2x

k
2 + β12x1xk + ϵ (2.9)
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2.4. ARTIFICIAL NEURAL NETWORKS

2.4 Artificial Neural Networks

The following statements are based primarily on the work of Nielsen [107], Bishop
[17], Walczak et al. [158] and Kruse et al. [82]. Artificial Neural Networks (ANNs)
are systems that record, process and transmit information and whose structure is
modeled on the nervous systems of animals and humans. They consist of relatively
simple units called neurons that operate in parallel to produce one common output.
Neurons communicate via connections in the form of activation signals.

An artificial neuron, also called a perceptron, generates a single binary output from
n binary inputs, x1, ..., xn:

Figure 2.4: Sketch of a Perceptron

With the help of n weights w1, ., wn, the importance of the respective input for the
output can be expressed. The vectors w and x are vectors describe the weights and
inputs, which are multiplied and summed up to get a weighted sum. The output of
the neuron is defined with the help of a threshold value. Depending on whether the
weighted sum ∑

wjxj is greater or less than the threshold, 0 or 1 is the output:

output =
0, if ∑

j wjxj ≤ threshold
1, if ∑

i wixi > threshold
(2.10)

The weights as well as the threshold are real numbers describing the parameters of
the neuron. If now wjxj is changed to w ∗ j = wjxj and the threshold is brought
to the other side of the inequality, it can be replaced by the so-called bias of the
perceptron b ≡ −threshold. The perceptron rule 2.10 thus changes to:

output =
0, if w ∗ x + b ≤ 0

1, if w ∗ x + b > 0
(2.11)

Here, the bias describes the measure of how easily the perceptron outputs a 1.

In addition to perceptrons, there are sigmoid neurons, which are modified so that
small changes in their weights and biases also cause small changes in their output.
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2.4. ARTIFICIAL NEURAL NETWORKS

This is critical for a network to learn. Like a perceptron, the sigmoid neuron can
have one or more binary inputs and produces a single output. The difference here is
that a perceptron can only produce values of 0 or 1, while sigmoidal neurons can
also produce values in between.

The sigmoidal function (σ(·) is defined by

σ(z) ≡ 1
1 + e−z

(2.12)

The output of a sigmoidal neuron with n inputs x1, ..., xn , n weights w1, ., wn and a
bias b is thus:

output = 1
1 + exp(− ∑

j wjxj − b) (2.13)

Figure 2.5a shows the form of a sigmoidal function while the function of a perceptron
is a simple step function, which can be seen in Figure 2.5b.

(a) Sigmoid Function (b) Step Function

Figure 2.5: Comparison of the function of a sigmoid neuron (left) versus the function
of a perceptron (right)

Each neuron has three functions: the network input function, the activation function
and the output function. The operation of an ANN, simply stated, works as follows:
each neuron receives an output from the previous neuron with the associated weights.
From this, the neuron calculates the network input with the help of the input function.
The activation function calculates the new activation of the neuron, from which the
output function calculates the output of the neuron.

The computations of a neural network can be divided into two phases: the input
phase and the work phase. The input phase in where the external inputs are fed
into the network, and the work phase is where the output is computed. In the input
phase, the activations of the input neurons are set to the values of the corresponding
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external inputs and the output function of these neurons is produced. In the work
phase, the activations and outputs of each neuron are computed (input function,
activation function, output function). As soon as the recalculations have reached
a stable state or a predefined number of recalculations has been performed, the
recalculations are terminated.

The number of layers of processing elements or nodes, including input, output
and possible hidden layers, as well as the number of nodes contained in each layer
determine the architecture of the ANN. Figure 2.6 shows a simple representation of
an ANN.

Figure 2.6: Basic architecture of a Artificial Neural Network

The neural network is composed of three types of neurons: input neurons, output
neurons and hidden neurons. Input neurons receive data from the environment,
output neurons send data back to the environment and hidden neurons lie between
the input and output layers and perform intermediate computations. The hidden
neurons are not directly connected to the environment, hence the name "hidden".

ANNs can be built without hidden layers, but in application they are diminished
accordingly, as is this case, where they can only classify input data that is linearly
separable. In order to solve nonlinear and complex problems, multiple hidden layers
can be used. The number of hidden layers is related to the complexity of the problem
to be solved. More layers can increase the accuracy of the fit, while a smaller number
of layers improves the extrapolation capabilities. Here, the number of layers is
determined heuristically. As the dimensionality of the problem space increases -
higher order problems - the number of hidden layers should increase accordingly.
If the number of nodes for a hidden layer is determined, the number of hidden
nodes increases the training time. At the same time more feature detectors can
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be used, however, too many can lead to overfitting and thus poor generalization
performance.

Depending on the network structure, two types of ANN can be distinguished:

• Feed-forward network: In the case, there are no cycles or loops, where a loop
is a connection from a neuron to itself.

• Recurrent network: Loops or directed cycles occur.

If the network structure is acyclic, the direction of information transfer is exclusively
from input neurons to output neurons. However, if there are loops or directed cycles,
the outputs can be recurrent with the inputs.

Two different types of learning can be distinguished, depending on the training data
and the criterion to be optimized: free learning and fixed learning. For a fixed
learning task, the neural network is trained to produce a corresponding output in the
output vector for every external input in the input vector for all training patterns.
Since in practice this optimum can rarely be achieved, an error function is used that
compares the desired outputs with the actual outputs to measure the match. This
error function is usually defined as the sum of squared deviations between the desired
and actual outputs over all training patterns and all output neurons. Thus, a fixed
learning task has a desired output and allows to compute errors.

In contrast, a free learning task for a neural network with n input neurons is a set of
training patterns, where each pattern consists of an input vector. Here, a different
criterion is needed to assess how well the ANN can solve the task. For example, an
example of this learning task is the creation of clusters of similar vectors (clustering).
Here, the idea is to generate "similar outputs for similar inputs". The similarity
between the outputs of a cluster should be as small as possible, while the similarity
between the different clusters should be as large as possible. This can be defined
with the help of a distance function.

The basic principle of training an ANN is to adjust the connection weights and other
parameters (e.g. thresholds) in order to optimize a certain criterion. To improve the
performance of ANN, the network must train and learn. Training consists of changing
the weights in the network to the point where the best result can be achieved. After
each output, it is compared to the desired output and a total error is calculated. The
smaller the value of the total error, the better the network. Back propagation is used
to change the weights and thresholds so that the error gradually becomes smaller.
If the value no longer changes, the training process is complete. In this process,
back-propagation uses gradient descent as an optimization technique. Figuratively,
this can be seen as a search for the global minimum on an error surface. Often, the
quadratic cost function C is used as error function for this purpose, which has the

15



2.4. ARTIFICIAL NEURAL NETWORKS

following form:
C = 1

2n

∑
x

||y(x) − y′(x)||2 (2.14)

C describes the average loss over n training examples where y(x) describes the output
of the carry function from y = f(∑

w ∗ x + b) and y′(x) represents the desired output.
By calculating the partial derivative of C with respect to each weight (and each bias),
the total error can now be minimized, as shown in equation 2.15

∂C

∂y
= y − y′ (2.15)

With the calculated gradient of each training sample it can now be determined if
and how the weights and the bias should be changed. Thus global minumum can be
found.

Design parameters for ANNs

In order to find a suitable model for a prediction, design parameters have to be
defined. The selection of these are essential for success, as unsuitable parameters
may result in the network being unable to train. Besides the number of layers and
neurons and the selection of the activation function, techniques for regularization,
the size of the learning rate, the epochs and the stack size can be defined.

In order not to fit the model too much to the training data and thus get an overfitting,
there is the possibility of regularization. The most common technique used is the
"dropout technique", which has the idea of removing random neurons with their
connections from the network during the training phase. This makes the network
more robust and insensitive to weights of the other neurons.

The learning rate controls the adjustment of weights and bias with respect to the loss
gradient. It determines the size of steps the model takes toward the local minimum.
If the learning rate is too small, the optimization takes a very long time and the
model runs the risk of getting stuck in the local minimum. However, if the steps are
too large, the model may miss the global minimum and the loss may even increase.

The number of epochs describes the number of times the entire data set has been
run through the model. After each epoch, the weights and biases can be adjusted
and optimized. More epochs also mean more opportunities to find better values for
weight and bias, but this also increases the training time and runtime. The size of a
stack describes the number of training samples that are used within an epoch. The
iterations describe the number of times a stack is run through the ANN.
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2.4.1 Convolutional Neural Networks

Since their introduction in the 1990s, Convolutional Neural Networks have contributed
enormously to the success of machine learning. CNNs are designed to mimic the
way the human brain thinks. They learn fully automatically, which allows them to
extract features that are salient in the input data across different layers. [123]

Convolutional Neural Networks are a special type of ANNs that have a grid-like
topology. Here, time series data is represented as a 1D grid, while image data is
represented as a 2D grid of pixels. A CNN uses a mathematical operation called
’convolution’ in at least one of its layers. This is a special kind of linear operation.

Convolution is an operation on two functions with a real argument. The goal here
is to average several measurements. By weighting the measurements, they can be
included in the calculation depending on their relevance. This can be achieved
with a weighting function w(a) : s(t) =

∫
(x(a)w(t − a)∂a. This operation is called

convolution and is typically notated with an asterisk: s(t) = (x ∗ w)(t). The first
argument (here the function x) is called the input, and the second argument (here
w) is called the kernel. The output is sometimes referred to as the feature map.

The advantages of convolution are the following three important ideas:

• Sparse interaction:

Traditional ANNs operate with matrix multiplication in which each output
unit interacts with each input unit. CNNs operate with a sparse interaction in
that the kernel is smaller than the input. As a result, fewer parameters are
stored, which improves both memory requirements and statistical efficiency
by requiring fewer operations to compute the output. With m inputs and
n outputs, matrix multiplication requires m × n parameters and thus has a
running time of O(m × n). If the number of connections is limited to k(k < m),
as is the case with convolution, the parameters decrease to k × n and the
running time decreases to O(k × n).

• Parameter sharing:

Whereas in a conventional ANN each element of the weight matrix is used
exactly once to compute the output of the layer, a CNN uses each part of
the kernel at each position of the input. This eliminates the need to learn a
separate set of parameters for each position. This further reduces the memory
requirement.
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• Equivariant representations:

The parameters are split in a special form in the case of a convolution, so that
the shift can be called equivariant to the translation.

Definition: A function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).

In the case of convolution, the function is equivariant to g if g is any function
that translates, id est (i.e.), shifts, the input. In the case of time series data, this
means that convolution produces a kind of timeline representing the time of
occurrence of different features in the input. If an event is shifted back in time
in the input, it will appear in the output in exactly the same representation,
only later in time.

In addition, convolution can work with variable-size inputs.

The architecture of the network consists of several layers. The basic architecture of
CNNs is single-headed. However, adding multiple heads multiplies pattern learning.
Each head can have different filter banks and different processing layers. In addition,
a pooling or dropout layer can be added in each head. These combination options
can achieve better performance and hence better learning results [8, 169].

Figure 2.7: Architecture of a simple CNN

Figure 2.7 shows the architecture of a simple CNN. The first layer of the CNN is
the input layer, which receives the raw time series data. The next layer is the
convolutional layer, which applies a series of filters (kernels) to the input data. Each
layer consists of three stages. In the first stage, multiple convolutions are performed
in parallel to generate presynaptic activations. For time series data, each filter
slides over the time series, performs element-by-element multiplication, and sums the
results to produce a single output value. By applying multiple filters to the input
data, the convolution layer produces a series of output feature maps that highlight
different temporal patterns in the time series. In the second stage, each activation is
guided by a nonlinear activation function. The intent behind this is to be able to
adapt to a wider range of activation functions, rather than being limited to linear
functions. Recitifed Linear Units (ReLUs) are often used here.
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ReLu =
x x ≥ 0

0 x < 0 = max(0, x)

In the third and last stage, a pooling function is applied. Here, an input vector
or matrix is divided into several regions, where each region contains several values
and are combined into a single value by the pooling operation. The most common
variants of pooling are max-pooling or mean-pooling, by using the maximum value
or the mean value with respect to each region. Other pooling operations would
still be the L2 norm or a weighted average. In all cases, pooling helps to make the
representation invariant to smaller shifts in the input. The idea is that relevant
information outweighs irrelevant information and continues to be included in the
output. Multiple pooling stages further reduce the impact of small changes due to
translation, rotation or scaling. After one or more of these convolutional layers, a
pooling layer is added to reduce the dimensions of the feature map while preserving
the most relevant information. Next, the flatten layer takes these outputs and
combines all the extracted features into a single vector. This vector is then fed into
one or more Fully Connected Layers (also called Dense Layers) to learn higher level
representations by connecting all the extracted features. The final Fully Connected
Layer is usually followed by a softmax activation function for classification tasks or
a linear activation function for regression tasks. Finally, the output layer produces
the final predictions based on the learned representations from the previous layers.
[14, p. 306]

Figure 2.8 shows the combination of the individual layers, where each convolution
layer consists of the three previously defined stages.
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Figure 2.8: Each Convolution Layer involves Convolution, Non-linearity and Pooling.

2.4.2 Transformer

The following statements are based primarily on the work of Bahdanau et al. [12],
Chandra et al. [29], Cheng et al. [32], Katrompas et al. [73], Kim et al. [78], Li
et al. [88] and Zhao et al. [178]. The basic idea of a Transformer model is an
encoder-decoder model, where the encoder represents the input from outside as an
internal representation and transfers it via the decoder to the output sequence. The
transformer model does not use layers but works with the architecture component
called attention. This component allows interaction between each pair of tokens in a
sequence allowing the model to learn relationships between tokens that are relevant
to a task. In this process, most attention modules automatically learn a pattern of
interaction between pairs of tokens. These patterns give each input token a weight for
the specific prediction task. This enables the model to learn dependencies between
tokens even if they are far apart in the input sequence. Modeling dependencies
without regard to their distance in the input or output sequences is a major advantage
of these transformers. They are potentially better at capturing recurrent patterns
with long-term dependencies. Most often, several of the attention modules are used
in parallel, allowing the model to learn different relationships. This is then referred
to as multi-head attention. As a result, Transformer models are able to focus on
different aspects of relevance between input elements, effectively capturing different
representative subspaces.
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2.5 Human-Data Interaction

The following statements are based primarily on the work of Kitchenham and
Ensio-Lehtonen [80, p. 1148-1167] and Cabitza and Locoro [25],. Human-Data
Interaction (HDI) is the study of how humans interact with data, both in terms of
how they create and use data, and how they are affected by the data they interact
with. In the health sector, HDI is concerned with how patients, healthcare providers,
and other stake-holders interact with health data. HDI is a relatively new field of
research, but it is growing rapidly due to the increasing amount of health data being
generated and the growing importance of data-driven decision-making in healthcare.
HDI research has the potential to improve the quality of care, reduce costs, and
improve patient outcomes.

Some of the key principles of HDI in the health sector include:

• Empowerment: HDI should empower patients and healthcare providers to
control their own data and to use it to make informed decisions about their
health.

• Transparency: HDI should be transparent about how data is being collected,
used, and shared.

• Privacy: HDI should protect the privacy of patients and other individuals
whose data is being used.

• Accuracy: HDI should ensure that the data being used is accurate and reliable.

• Usability: HDI should design systems that are easy to use and understand.

In the health sector HDI is primarily used to develop personalized medicine approaches
that thake into account the individual patient’s genetic, environmental and livestyle
factors. HDI is also used to develop clinical decision support systems that help
healthcare providers making better decisions. It is used to engage patients in their
own care, providing them access to their health data and tools to help them manage
their health. Another approach is to deliver telehealth services, which allow patients
to receive care from distance.

However HDI in the health sector still has some difficulites. Patients and healthcare
experts have to be willing to use new HDI technologies, which is difficult if they are
not familiar with them or if they do not trust them. There can occure concerns about
privacy, security or the accuracy of the data. HDI systems also must be easy to use
and understand. If systems are too complex or difficult to use, patients may not be
able to understand them effectively, which can lead to errors and misunderstandings.
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HDI systems also must provide a good user experience. They should be easy to
navigate and responsive and they have to be user-friendly, otherwise patients will not
be willing to use them. HDI systems must be designed to prevent misrepresentations,
misinterpretations, and misunderstandings of health data. This can be done by using
clear and concise language, providing context for the data, and allowing users to
ask questions. What is more, there are no universally accepted standards for digital
health data, which can make it difficult to share and integrate data from different
sources. Different digital health systems may not be able to communicate with each
other, which can make it difficult to get a complete picture of a patient’s health.
There are different regulations governing the use of health data in different countries,
which can make it difficult to develop and deploy HDI systems.
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3 Evaluating the Accuracy and
Validity of the Wearable

This chapter aims to evaluate the validity of PPG measurement by first reviewing
the literature and then analyzing real data.

3.1 Literature Research

Many different studies by different research groups showed unsatisfactory results of
HR agreement of PPG measurements in comparison to ECG measurements [24, 27,
54, 68, 143].

Navalta et al. [105] investigated the validity of HR from various wearable devices
with PPG measurement during a trail run with variable intensities. They found that
the PPG devices, regardless of their position (finger, wrist, ear, forearm), did not
provide acceptable agreement compared to the gold standard during runs of less
than 20 minutes. They also observed that the validity during treadmill training was
higher than during unrestricted activities. Especially in high intensity ranges, the
accuracy decreases in their study. Bunn et al. [24] found in their study, that the best
results were achieved at rest or when training on a bicycle ergometer. The higher
the intensity, the lower the accuracy. Also, Thiebaud et al [153], Dondzila et al [40],
Reddy et al [125], Düking et al [43], Jo et al [68] stated that intensity ranges matter
most and the highest intensity range shows the highest measurement inaccuracies.
Thiebaud et al. [153] compared PPG estimations with an ECG measurement while
running on a treadmill at different speed and intensity ranges. They concluded that
the accuracy of the devices may not yet be high enough to use it in research or to
recommend it to athletes who need precise HR measurements for training purposes.
Dondzila et al. [40] measured HR via PPG devices while walking and running. With
increasing intensity, the accuracy of a wearable decreased. Reddy et al. [125]
compared the PPG measurements over two days while performing different tests,
training sessions and activities of daily living. They compared the measurements
to those of a cheststrap. The wearables were reasonably accurate at measuring HR
however there was more error observed when training in a high intensity range and
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with less wrist motion. Düking et al. [43] investigated the accuracy of four wrist-worn
wearables while sittinig, walking and running at different intensities. They stated
that the measurements of two of these wearables at high intensity range should be
interpreted with caution since the error rate increased. Jo et al. [68] measured the
HR via two wearables while resting, cycling, walking, jogging, running, arm raises,
lunges and isometric plank. Both wearables showed a decrease in accuracy during
higher intensities while one of them failed to satisfy their validity criteria.

Nevertheless, there are also some research groups that obtained satisfactory results
in their studies regarding the measurement accuracy of PPG sensors [114, 145, 160].
However, the studies are designed differently, making it difficult to compare the results.
The validity of PPG measurement can be affected by a number of factors, including
the size and generalizability of the subject group, the length and performance of the
measurement and examination, and the use of different reference measurements in
those investigations.

3.2 Investigation of real-world data

The following section describes the process in which a real data set is examined for
validity and accuracy.

3.2.1 Methods

For data collection, the data set of the study "Validity and Reliability of Consumer-
Grade Optical Heart Rate Sensors to Assess Volume of Physical Activity and to
Categorize Its Intensity" provided by Priv.-Doz. Dr. Dr. med. Mahdi Sareban, the
Salzburger Landeskliniken and the Ludwig Boltzmann Institute for Digital Health
and Prevention was used [98]. The data set collected ECG measurements and HR
estimates of a wearable sensor (Garmin venu2s) via PPG. The data was collected over
24 hours in 32 subjects (66% male). 11 of these subjects were taking HR modifying
drugs (β-blocker, ivabradine) during the time of the study. The data was collected
with a sampling frequency of 1 Hertz (Hz), so the resulting HR value describes the
number of Beats per Minute. The PPG recordings were extracted using the device’s
own software. Heart rate from the 4-lead Holter ECG device (Amedtec ECGpro,
Aue, Germany) was exported from ECGpro, imported into GNU Octave (Copyright
© 1998-2021 John W. Eaton) and transformed into 1 Hz format. Both extracted
measurements were synchronized based on their time stamps, so that there was both
a HR value from the ECG and a value from the wearable for each second.
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3.2.2 Data Preprocessing

Despite the timestamp synchronization, other studies have also discussed that asyn-
chronous results can occur, leading to errors and biased results. Reasons for these
delays may include misaligned time stamps or systematic patterns. Delays can even
be caused by the small time delays between the actual heartbeat (measured with
the ECG) and the change in vessels in the extremities (measured with the wearable).
Since the comparison of the measurement is done every second, a possible temporal
shift can lead to a large bias in the results [15, 36, 64, 142]. Various studies describe
the synchronization process in their investigation, using either an automated method
or manual correction [44, 56, 63, 65, 66, 68, 81, 99, 103, 113, 115, 117, 132]. However,
manual correction and visual inspection in this process is very time consuming and
prone to potential errors. Therefore, Mühlen et al. [102] propose an automated
method, such as shifting to the minimum Root Mean Squared Error (RMSE) or to
the maximum Cross-Correlation-Coefficient [34, 129]. Coackley et al. [34] obtained
the best results with this maximum Cross-Correlation-Coefficient shift.

To determine whether there was a systematic error in the PPG measurements in
this data set, the measurements of each subject were examined and shifted to the
maximum Cross-Correlation-Coefficient between the two HR measurements. The
synchronized data sets were then analyzed. Table 3.1 shows a summary of the
subjects’ HR data.

ECG wearable
absolute number of HR measurements 2850230 2850230
HR mean 72.46 (23.67) 74.43 (18.40)
HR max 2143 201
HR min 0 33

Table 3.1: Summary of measurement of HR data of ECG and wearable
HR mean ... mean of all HR measurements ± standard deviation
HR max ... maximal HR value
HR min ... minimum HR value

3.2.3 Descriptive Analysis

The HR data was analyzed using a descriptive analysis. The intent of the descriptive
analysis was to investigate the validity of the estimates of the wearables compared
to the ECG recording. The data was processed and analyzed using Python.

Because the influence of exercise intensity was found to be highly relevant in the
previous literature review, the HR data were additionally divided into four intensity

25



3.2. INVESTIGATION OF REAL-WORLD DATA

ranges and analyzed within each range. Medical societies recommend relative
exercise intensities based on physiological data such as percentage of Maximum
Heart Rate (HRmax) to categorize four intensity ranges: minor (<57% HRmax), light
(57-63% HRmax), moderate (64-76% HRmax) and high (>77% HRmax) [119].

Before the data sets were cleaned for further analyses, the HR data was analyzed
for recording errors. A value was classified as an error if it was below the previously
defined individual minimum HR (HRmin) or above the previously defined individual
HRmax of the subject.

recording
error

errormin
∑N

i HRi < HRmin

errormax
∑N

i HRi > HRmax

errorall
∑N

i (HRi < HRmin) + (HRi > HRmax)

Across all intensity ranges, the ECG shows more errors (4031.69 ± 3768.65) compared
to the wearable (252.37 ± 871.11) which can be seen in Table 3.2. Both the ECG
and the wearable show more errors in this, recording heart rate as too low.

ECG wearable
errorall 4031.69 ± 3768.65 252.38 ± 871.11
errormin 3985.66 ± 3751.54 222.91 ± 875.41
errormax 46.03 ± 54.08 29.47 ± 63.27

Table 3.2: Errors in ECG and wearable measurements: mean ± standard deviation

If the measurements are divided into the intensity ranges, the wearable tends to
overestimate the HR in the high range and underestimate the HR in the minor range.
There occur less errors in the light and moderate range, however also with a higher
proportion of underestimating values. The most errors occur in the minor intensity
range. Relative to the number of timestamps in the intensity range, the high range
shows the most errors. Table 3.3 shows the absolute values of the errors while
Figure 3.1a shows the relative values of errorall compared to the absolute number
of timestemps. The relative values of errormin and errormax are shown in Figure
3.1b.

Subsequently, all errors of the ECG were removed and the dataset could thus be used
as a clean dataset for further analyses.
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wearable

range minor

absolute number 1728643
errorall 206.16 ± 795.67
errormin 206.13 ± 795.67
errormax 0.03 ± 0.18

range light

absolute number 807366
errorall 11.31 ± 52.28
errormin 11.31 ± 52.28
errormax 0

range
moderate

absolute number 239206
errorall 3.09 ± 15.54
errormin 2.91 ± 15.54
errormax 0.19 ± 1.06

range high

absolute number 75015
errorall 31.81 ± 63.53
errormin 2.56 ± 14.31
errormax 29.25 ± 63.1

Table 3.3: Recording errors of wearable measurement in different intensity ranges

(a) errorall (b) errormin and errormax

Figure 3.1: Recording relative number of errors of wearable (PPG)

3.2.4 Results of Descriptive Analysis

Table 3.4 shows the mean, the standard deviation (std), the minimum (min) HR value,
the maximum (max) HR value and the absolute number of heartbeats before and
after the cleaning process. Over all intensity ranges, the mean of the ECG rises while
the standard deviation decreases. The mean rises in all intensity ranges except in
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the minor range while the standard deviation decreases in all four intensity ranges.

ECG wearable
before after before after

absolute number 2850230 2631106 2850230 2631106
mean 72.46 74.87 74.43 74.54

all ranges std 23.67 18.48 18.4 17.72
min 0 37 33 37
max 2143 190 201 185
absolute number 75015 66716 75015 66716
mean 128.75 126.38 120.04 118.33

range high std 23.92 20.16 24.66 23.78
min 93 93 38 45
max 2143 190 201 185
absolute number 239206 227877 239206 227877
mean 100.69 100.00 98.05 97.30

range moderate std 14.91 14.86 15.40 15.21
min 77 77 39 39
max 144 144 169 169
absolute number 807366 771150 807366 771150
mean 83.58 83.21 82.80 82.40

range light std 12.11 12.20 12.23 12.28
min 62 62 36 41
max 119 119 185 185
absolute number 1728643 1565363 1728643 1565363
mean 60.91 64.90 65.15 65.48

range minor std 18.99 10.62 11.89 11.24
min 0 37 33 37
max 95 95 180 180

Table 3.4: Comparison of data before and after the cleaning process.

For the descriptive analysis, the following statistics were used to check the validity of
the wearable’s HR estimations (ppg) compared with the ground truth (ECG): Mean
Absolute Error (MAE), Mean Directional Error (MDE), Root Mean Squared Error
(RMSE) and Pearson Correlation Coefficient (corr). In addition, the relative number
of matching beats was counted. A beat was classified as a match if the absolute
difference between the HR values from the wearable and the ECG did not exceed three
beats. The exact formulas are shown below, where HRecg refers to the measurement
of the ECG, HRppg refers to the measurement of the wearable and N refers to the
absolute number of timestamps.
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Mean Absolute Error: MAE(HRecg, HRppg) =
∑N−1

i=0 |HRecg
i −HRppg

i |
N

Mean Directional Error: MDE(HRecg, HRppg) =
∑N−1

i=0 HRecg
i −HRppg

i

N

Root Mean Squared Error: RMSE(HRecg, HRppg) =
√∑N−1

i=0 (HRecg
i −HRppg

i )2

N

Pearson’s Correlation Coefficient: corr =
∑N

i=1(HRecg
i −HRecg)(HRppg

i −HRppg)√∑N

i=1(HRecg
i −HRecg)2

√∑N

i=1(HRppg
i −HRppg)2

Matching Beat: match =
∑N

i=1 |HRecg
i −HRppg

i |≤3
N

Table 3.5 shows the results of the error metrics (MAE, MDE, RMSE), Pearson Correla-
tion Coefficient (corr) and the Matching Beat (match) analysis, separated in the four
intensity ranges. In the Mean Absolute Error, the Mean Directional Error, and the
Root Mean Squared Error, the high intensity range provides the largest value and
deviation. The minor intensity range shows the lowest error metrics and also the
lowest deviation of errors. At the same time, the minor intensity range shows the
largest value in the Pearson’s Correlation Coefficient and the most Matching Beats.
These are the lowest in the high intensity range.

high moderate light minor
MAE 9.022 ± 6.973 5.589 ± 3.796 3.900 ±2.343 2.129 ± 1.172
MDE 7.597 ± 7.229 3.677 ± 3.881 1.355 ± 1.758 -0.608 ± 0.580
RMSE 15.741 ± 9.116 9.501 ± 5.255 6.171 ± 3.212 3.942 ± 2.599
corr 0.547 ± 0.253 0.516 ± 0.190 0.666 ± 0.173 0.800 ± 0.194
match 0.648 ± 0.198 0.661 ± 0.184 0.697 ± 0.186 0.861 ± 0.118

Table 3.5: Mean ± standard deviation of error metrics of all subjects

The boxplots of the error metrics separated in the intensity ranges are shown in
Figure 3.2a, Figure 3.2b shows the Pearson’s Correlation Coefficient.

In Table 3.6, the total value summarized over all subjects of MAE, MDE and RMSE
can be seen. In all three error measurements, the high intensity range provides the
largest values.

high moderate light minor
MAE 9.438 4.768 3.111 2.370
MDE 8.050 2.702 0.806 -0.577
RMSE 18.059 9.108 5.751 5.198

Table 3.6: Total Values of Error Metrics
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(a) Error Metrics (MAE, MDE, RMSE)

(b) Pearson’s Correlation Coefficient

Figure 3.2: Boxplot of error metrics and Pearson’s Correlation Coefficient between
ECG and wearable separated into different intensity ranges

As shown in Figure 3.3b, the Mean Directional Error was negative for the minor
intensity range, but positive for the light, moderate and high intensity ranges. This
suggests that the wearble tends to overestimate the HR in the minor intensity range.
In the other intensity ranges, the wearable tends to underestimate the HR, so the
Mean Directional Error shows positive results. When the direction of the mean error
is no longer considered, the Mean Absolute Error for the highest intensity range
shows the largest value (Figure 3.3a). The Root Mean Squared Error is also largest
in the high intensity range (Figure 3.3c).

The total value of the Pearson’s Correlation Coefficient between the ECG and the
wearable as well as the Matching Beats can be seen on Table 3.7. Consistent with
the previous results, the high intensity range shows the lowest value. Here, the light
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(a) Mean Absolute Error (b) Mean Directional Error (c) Root Mean Squared Error

Figure 3.3: Total values of error metrics of different intensity ranges

intensity range and the minor intensity range have the highest Pearson’s Correlation
Coefficient, therefore, the measurements of the wearable correlate best with the ECG
measurement, which can also be seen in Figure 3.4a. Consistent with the previous
results, the highest intensity range also shows the fewest Matching Beats (3.4b).

high moderate light minor
corr 0.741 0.833 0.892 0.890
match 0.619 0.679 0.760 0.834

Table 3.7: Total values of Pearson’s Correlation Coefficient (corr) and Matching Beats
(match)

(a) Pearson’s Correlation Coefficient (b) Matching Beats

Figure 3.4: Total values in different intensity ranges
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The Bland-Altmann plots with respect to the four intensity ranges are shown in
Figure 3.5. Again, it is visible that the highest intensity range has the largest
deviation. The minor range has a larger difference towards the negative range which
is consistent to the previous results.

(a) High range (b) Moderate range

(c) Light range (d) Minor range

Figure 3.5: Bland Altmann Plots of separate ranges

The Bland Altmann values are listed in Table 3.8.

mean diff sd diff upper limit lower limit
high 8.050 16.165 39.734 -23.634
moderate 2.702 8.698 19.751 -14.346
light 0.806 5.694 11.967 -10.355
minor -0.577 5.166 9.549 -10.702

Table 3.8: Bland Altmann Plot values of different ranges
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In addition to the Beat-to-Beat (btb) analysis, a 10 second Average Window (avg)
analysis follows. For both the ECG and the wearable, the seconds were averaged
over a rolling window of 10 seconds and then analyzed in terms of Mean Absolute
Error, Root Mean Squared Error, Mean Directional Error and Pearson’s Correlation
Coefficient.

btb avg

all ranges

MAE 2.953 ± 1.397 2.215 ± 1.175
MDE 0.307 ± 0.826 0.307 ± 0.825
RMSE 5,826 ± 2,713 4.848 ± 2.825
corr 0.927 ± 0.055 0.947 ± 0.052

high

MAE 9.022 ± 6.973 6.285 ± 6.847
MDE 7.597 ± 7.229 4.866 ± 6.985
RMSE 15.741 ± 9.116 10.699 ± 8.875
corr 0.547 ± 0.253 0.729 ± 0.217

moderate

MAE 5.589 ± 3.796 4.934 ± 3.735
MDE 3.677 ± 3.881 3.183 ± 3.822
RMSE 9.501 ± 5.255 8.624 ± 5.357
corr 0.516 ± 0.190 0.569 ± 0.201

light

MAE 3.900 ± 2.343 3.334 ± 2.177
MDE 1.355 ± 1.758 1.080 ± 1.415
RMSE 6.171 ± 3.212 5.610 ± 3.120
corr 0.666 ± 0.173 0.702 ± 0.180

minor

MAE 2.129 ± 1.172 1.365 ± 0.949
MDE -0.608 ± 0.580 -0.297 ± 0.572
RMSE 3.942 ± 2.599 2.885 ± 2.682
corr 0.800 ± 0.194 0.893 ± 0.133

Table 3.9: Comparison of beat-to-beat (btb) vs 10 second average (avg)

In all three error metrics, averaging over 10 seconds shows a reduction in error. The
difference between the beat-to-beat results and the averaged value over 10 seconds
shows the same ranking, but the error values become smaller overall. This is evident
for the MAE (3.6a), the RMSE (3.6b), and the MDE (3.6c). The Pearson’s Correlation
Coefficient, on the other hand, becomes larger for the averaged values (3.6d). Table
3.9 shows the results of this analysis.

33



3.3. RESULTS

(a) Mean Absolute Error (b) Root Mean Squared Error

(c) Mean Directional Error (d) Pearson’s Correlation Coefficient

Figure 3.6: Comparison of btb versus avg of different error metrics over separate
ranges

3.3 Results

To verify the validity of the wearable sensor, several descriptive statistics were
used that analyzed the wearable in comparison to the gold standard the ECG. The
wearable shows the most recording errors in the minor intensity range, however
looking at the relative number of recording errors, the high intensity range shows the
highest value. In the highest intensity range the wearable shows the largest errors
(MAE, MDE and RMSE) as well as the smallest Pearson’s Correlation Coefficient and
the less Matching Beats. Comparing the measurements not beat-to-beat, but over an
averaging window of 10 seconds, all error metrics can be reduced and the Pearson’s
Correlation Coefficient increases. Nevertheless, the individual intensity ranges show
up in the same order measured by the magnitude of the error.

These results are consistent with previously obtained findings from the literature,
where the wearables also showed the greatest inaccuracy in the high intensity ranges
[24, 40, 43, 46, 68, 105, 125, 153, 176].
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4 Prediction of Measurement Error

AI and Machine Learning have been used to develop models that can predict disease
risk, treatment effectiveness, and the outcome of medical procedures. For example,
Machine Learning models have been used to predict the risk of heart attack, the
effectiveness of cancer treatments and the outcome of surgery. These models have
helped physicians make better decisions about patient care. Natural language
processing has been used to extract information from medical texts. This information
can be used to improve the diagnosis and treatment of disease. Natural language
processing has been used to extract information from medical records and to develop
systems that can answer questions about diseases. These systems have helped
physicians provide better care to their patients [11]. The aim now, is to develop a
model which is able to capture and learn the measurement error that was confirmed
in the investigating chapter and thus be able to predict occurring measurement
errors.

Since physiological data, such as the recording of HR, is also understood as a time
series, it is necessary to apply the best methods proposed by the literature for time
series prediction. A literature research was carried out at the beginning in order to
be able to select a suitable method.

4.1 Literature Research: Time Series Prediction

In recent decades, interest regarding time series datamining has grown rapidly
[4, 32, 87, 86, 92]. The components of time series datamining include pattern
recognition, clustering, classification and prediction [150].

Prediction is the most common and important application of time series [165]. Time
series prediction is called prediction by examining pattern from past data [101]. In
recent years, a lot of research has been done to understand the future using time
series data. [112]

Time series forecasting can be found in business and academia, in the financial sector,
for forecasting index prices, stock closing prices, production revenue, sales volume
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[60, 76, 85, 179], for forecasting electricity load [37, 96], for weather forecasting
[110, 122] or in the field of medicine and health. Time series forecasting is used
in the medical field in many different situations, such as dialysis of critically ill
patients, predicting mortality risk in pediatric intensive care, predicting hypotension
episodes in critical care or predicting morbidity of tuberculosis [3, 47, 84, 111].
Arima, Linear Regression, Support Vector Regression (SVR), Gradient Boosted
Regression Tree (GBRT) and Multilayer Perceptron (MLP) are classical regression
models [128, 141] which can perform efficient numerical prediction and time series
forecasting. These regression models are easy to implement and also require less
computation time. However, these models have two limitations: they must use
fixed-length features and cannot fully exploit sequential dependence [89]. This has
sparked interest in developing more powerful forecasting methods and interest is
quickly shifting toward neural forecasting methods [168].

Deep learning models have become a promising tool for time series prediction [16, 112].
By "learning without assumptions," neural networks have distinct advantages in
real-world applications where data is easy to collect while relationships are difficult
to discern. Neural networks are non-parametric, non-linear and have universal
functional approximations which can learn and capture relationship from the data
[16]. They have the advantage and strength of being able to automatically learn
temporal dependencies and automatically process temporal structures such as trends
and seasonality. They can automatically learn arbitrary complex mappings of inputs
to outputs and support multiple inputs and outputs [21]. The success of the Machine
Learning processes depends on how well the features were extracted, which is a
subjective process and often leads to overfitting. Furthermore, Deep Learning
methods can speed up this feature extraction process, which can be complicated
and time consuming. Thus Deep Learning methods provide better results and offer
better generalization. [108]

The most used Deep Learning algorithms are Convolutional Neural Networks (CNNs),
Long Short Term Memory Networks (LSTMs), Recurrent Neural Networks (RNNs),
Generative Adversarial Networks (GANs), Deep Belief Networks (DBNs), Restricted
Boltzmann Machines (RBMs) or Autoencoders.

There are several studies in which the prediction of time series using CNN was
successful. Livieris et al. [91] used a CNN-based model to predict the price of gold.
Gamboa et al. [55] compared several Deep Learning models for time series prediction,
including CNNs, and found that CNNs produced better results. Fawaz et al. [49]
compared several CNN-based models for time series classification and found that they
outperformed other Machine Learning algorithms. Zhao et al. [177] investigated
the classification accuracy of a novel CNN model, which outperformed conventional
methods. In addition, they showed that Deep Learning methods detect and learn
more robust features and therefore perform better on classification problems. Warrick
et al [163] developed a method for short-term HR prediction of perinatal fetal HR
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using LSTM. In addition, they proposed a model combining CNN and LSTM to avoid
the weakness of LSTM, which performed better. Zhang et al. [176] also developed a
Deep Learning network to classify multivariate time series and achieved significantly
better results. For this purpose, they modified a CNN model and combined it with
an MLP. Applications of CNNs in the health domain include ECG classification
[79], structural health monitoring [1] and motor disturbance detection [67]. These
techniques have been shown to be very effective in capturing long-term dependencies
and nonlinear dynamics [97].

Since their introduction in the 1990s, CNNs have contributed enormously to the
success of Deep Learning. CNNs are designed to mimic the way the human brain
thinks. They learn fully automatically, which allows them to extract features that
are salient in the input data across different layers. [123]

There are several studies that investigated different algorithms and models using
Machine Learning and Deep Learning to predict time series of HR. All studies
showed better results for Deep Learning algorithms compared to traditional Machine
Learning algorithms. Since CNNs can completely solve nonlinear problems for a large
amount of data to some degree, it is often used for the prediction of physiological
parameters [140, 144, 149]. However, CNNs have a weakness of not being able to
learn the variation of peak features when the data have high volatility and instability
[175].

Masum et al. [97] investigated different Deep Learning models such as LSTM, BI-
LSTM, and CNN for predicting Blood Pressure (BP) and Heart Rate (HR) from
univariate and multivariate time series. Here, they developed models for predicting
blood pressure and HR 30 minutes ahead (univariate) and BP+HR multivariate,
respectively (resp). The multivariate version showed better results. Murugesan
et al [104] used a CNN-based model to classify ECG signals into different types of
arrhythmias that may affect HR. Niu et al [108] developed a CNN-based model
to classify ECG signals into different HR categories. Seong-Hyun et al. [77] used
a CNN-based model to estimate HR from PPG signals. Qiu et al. [121] used CNN
to calculate HR from facial videos. Reiss et al. [126] estimated HR from PPG and
accelerometer data using a Fourier Transform (FFT) and a four-layer CNN model
with preprocessing by z-normalization. Biswas et al [18] proposed a four-layer deep
neural network with two CNN layers and two LSTM layers to improve the accuracy
of HR disease in naturalistic measurements. The proposed system improved Mean
Absolute Error accuracy in HR prediction on their dataset of 22 PPG recordings.
Zhang et al. [175] set the goal to predict HR according to the current real-time HR
measurement to effectively predict and prevent cardiovascular diseases. For this
purpose, they developed a model combining CNN and Gated Recurrent Unit (GRU)
to exploit their respective advantages. Experimental results showed that this model
exhibited higher prediction accuracy than other traditional methods. Brophy et al.
[20] applied two Deep Learning methods, one for human activity detection, one for
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HR estimation. For HR estimation, they used a publicly available PPG dataset that
captured HR at a rate of 256 Hz for 10 minutes. The PPG recording was compared
with a simultaneously running ECG, which served as the ground truth. Before
recording the PPG signal, it was down sampled to different sampling frequencies
and a classifier was trained using the recalculated frequencies (30 Hz, 15 Hz, 5 Hz,
1 Hz). In the process, they developed a CNN with a regression layer as the output
layer, named CNNR (Convolutional Neural Network with Regression). This is a
four-layer one-dimensional network with batch normalization and ReLUs. To compare
the performance of the CNNR model, an open source toolkit was used, which is also
used for HR estimation of PPG data. To achieve the best result, the parameters of
the CNNR model were chosen. They obtained comparable results to the toolkit and
additionally discovered that the CNN model obtained better results at low recording
frequency (10 Hz) than at 15 or 30 Hz. The reasons for this have not yet been
fully investigated. Taye et al [152] used different Machine Learning algorithms to
predict the occurrence of imminent ventricular tachyarrhythmia. They compared
CNN, ANN, Support Vector Machine (SVM), K-Nearest Neighor (KNN), with CNN
outperforming the other algorithms. Shyam et al [139] were the first to attempt to
estimate PPG signals independent of patient and data set. They compared different
Deep Learning Methods such as CNN, LSTM and Fully Conventional Network (FCN)
on two different datasets and achieved satisfactory results with their approach (MAE
3.36 ± 4.1 average error). It confirms that the presented CNN model can adapt to
PPG devices and needs little training to adapt to a new device with a new hardware.
They worked with a window size of 8 seconds with 6 seconds overlap and a sampling
frequency of 125 Hz.

In recent years, in the field of Deep Learning, the transformer model has also attracted
much attention due to its excellent performance in various domains, such as natural
language processing, computer vision and language processing [38, 42, 165]. Due to
the advantage that transformers have with great modeling abilities, they can capture
dependencies and interactions in sequential data well. They are also interesting
in the field of time series modeling, such as in prediction, anomaly detections,
and also for classification problems [85, 157, 165, 169, 171, 172, 173]. Li et al [85]
compared transformers in univariate time series forecasting and showed that this
outperformed conventional Machine Learning. Zerveas et al. [173] presented a
transformer-based framework for unsupervised learning of multivariate time series
representation. Using evaluations on several benchmark datasets, they showed that
this modeling approach outperforms all existing supervised state-of-the-art methods.
Liu et al [90] combined transformers with gating mechanisms. This combination
shows competitive performance on time series classifications in various experiments
compared to state-of-the art Deep Learning models. Yang et al. [172] implemented an
approach using transformers to reprogram a pre-trained acoustic model for time series
classification. They achieved at least as good of results as state-of-the-art techniques.
Cai et al. [26] used transformers to predict traffic and capture spatiotemporal
dependencies. They achieved the best results with a time series segment method in
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combination with a neural graph convolutional network and transformer.

In the field of medicine and health, transformers have been studied very little.
Che et al. [31] attempted to use transformers to classify an ECG signal based on
arrhythmia. They presented a model that combines CNN and a transformer for
ECG signal classification. By combining them, they achieved significantly improved
performance. Katrompas et al. [73]compared an LSTM with Self Attention model
and a transformer model for classification and prediction of time series, where the
LSTM with Self Attention gives better results.

Thus, a combination of CNN and Transformers show great potential for predicting HR
data. This combination is going to be compared to a simple CNN model. Additional
a conventional Linear Regression model will be compared to those two Deep Learning
approaches.

4.2 Methods

The goal of this work is to train a model to recognize the current measurement
error of the wearable and predict the difference between the wearable’s estimate
and the ground truth’s correct HR measurement representing the actual heartbeat.
For this purpose, three models are compared: Multiple Linear Regression, a Deep
Learning Model using CNN and a Deep Learning Model using a combination of CNN
and Transformers. For all approaches, the data was first preprocessed and put into
a format so that it could be subsequently be used for prediction. After that, the
data was divided into training and test set to later evaluate the performance of each
model and compare them.

4.2.1 Models

There are three models, which will be used for this work. The first one is a Linear
Regression Model, the second and the third are Deep Learning models.

Linear Regression Model

As mentioned in the previous section, there are simple methods to predict the future
from past data. One basic method is Linear Regression. Linear Regression is a
statistical technique that studies and models the relationship between variables. It is
used in many fields such as engineering, physical and chemical sciences, and life and
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biological sciences. It may be the most commonly used statistical technique. Regres-
sion is used for data description, parameter estimation, prediction and estimation
and control, among others [127]. This Linear Regression model is intended to serve
as the basic model in this thesis, since it involves less computational effort and thus
will serve as a comparative model.

Deep Learning

In the literature review, both CNN and Transformers show great promise. CNNs have
been used to work with heart data however Transformers have not been studied
much in the field of medicine and health. There are already studies combining CNN
and Transformers to classify ECG, but not yet to predict PPG signals. Based on this,
a simple CNN model and a CNN in combination with Transformer, referred to as
CnnTrans in the following sections, are used in this work

4.2.2 Data Preprocessing

The data was prepared in such a way that a prediction model could be applied
subsequently. First, the data was cleaned of missing measurements. The ECG, which
is considered as the ground truth, was additionally cleaned of obvious errors and
outliers (errorall). Then the data was transformed into a supervised learning mode.
In this mode, the idea is that the model recognizes and learns an association between
the input and output variables. The model is later trained based on the input data
(X) to predict the output data (y). To transfer the time series data into supervised
learning, the input data was configured into an Observation Window (X). Thus, the
PPG signal was divided into windows of a size of 10 seconds, with an overlap of 9
seconds with the previous window and a slide of 1 second. The output variables
(y) described the difference between the HR estimate of the wearable to the HR
measurement of the ECG for that specific window as a real value. The preprocessing
into the window (X) and difference (y) is shown in the figure 4.1.

4.2.3 Data Splitting

The data was divided into 80% training set and 20% test set. The data of all 32
subjects contain a total of 2453269 windows. In order not to split the individual
data sets of the subjects, subject 1 to 25 were used as training data and 26 to 32 as
test data. This results in a split of 2120672 training values and 598596 test values.
The models were trained and optimized using the training data and evaluated using
the test data.
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Figure 4.1: Data preprocessing for supervised learning

Table 4.1 shows the number of windows of the training and test set. Additionally, it
shows how many of these windows are located in the high, moderate, light or minor
intensity range.

whole dataset high moderate light minor
training data 2120654 52927 186868 623994 1256865
test data 598578 16468 50323 185371 346416

Table 4.1: Number of windows in training and test set

4.3 Model Training

In the following, the structure of each model will be explained in more detail as well
as the progress of the training.

4.3.1 Multiple Linear Regression

For the linear models, the data was further processed by dividing the Observation
Window into a feature matrix. Each column of the matrix represents a different
value of the window. Each row of the matrix corresponds to one observation window.
The model uses each time stamp of the window as a regressor variable. Figure 4.2
shows the preprocessing of the data for the regression model.

41



4.3. MODEL TRAINING

Figure 4.2: Preprocessing for Linear Regression model

The linear model was created using the scikit-learn library. The model takes the
feature matrix (X1 to X10) and the target variable (y) as input and analyzes the
relationship between those. It also assumes a linear relationship between the features
and the target variable and assumes that the target variable can be expressed as a
linear combination of the feature variables, with the coefficients assigned to each
feature representing weights. By fitting the model, the coefficients indicating the
strength and direction of the relationship between the characteristics are estimated.

4.3.2 CNN

A Deep Learning model using the Keras Deep Learning framework was built. The
model consits of one input layer, four pairs of convolutional layers followed by batch
normalization and ReLU activation. After that there is a global average pooling layer
to reduce the spatial dimensions of the features. A flattening layer follows and two
fully connected dense layers are added. The first dense layer has ReLU activation
with 32 units, while the second layer has 1 unit. The model uses the Adam optimizer
and a custom loss function, which is defined by the absolute difference between the
true difference of the ECG and the wearable (=difftrue) and the predicted difference
of the model (=diffpred).
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loss function = |difftrue − diffpred| (4.1)

After preliminary tests, ranges of possible values for hyperparameters are defined,
such as epoch number = [50, 100, 200, 300], hidden neurons [8, 16, 32, 64], or
kernel size = [3, 5, 7]. The optimal hyperparameters can be determined based on
the prediction performance which were evaluated and identified using GridSearch
and cross-validation. The optimal parameters are as follows: 200 epochs, 8 hidden
neurons in the first two and 16 hidden neurons in the third and fourth layer with a
kernel size of 3. The structure of the architecture of the whole Deep Learning process
is shown in Figure 4.3. The CNN model architecture is shown in Figure 4.4a.

Figure 4.3: Architecture of Deep Learning model

4.3.3 CNN and Transformer

Using the Keras Deep Learning framework with Tensor Flow backend, a Deep
Learning model was built. The model initially consists of four convolutional layers.
Each layer creates a one dimensional convolutional layer and applies the ReLU
activation function to its output. In addition, each layer applies batch normalization
to the output. After these two convolutional layers, the model applies a multi-head
self-attention mechanism. It splits the input into multiple heads, performs attention
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computations, and returns the attention output. Then, it undergoes a DropOut
realization is performed to avoid overfitting. Batch normalization is applied on
top of this, which helps stabilize the training process. Global average pooling is
performed on the output of the transformer block. This calculates the average value
for each channel along the time dimension, resulting in a fixed-length representation
of the input sequence. Next, a fully connected dense layer is added and the ReLU
activation function is applied. Finally, a dense layer is added, representing the
output of the model. Overall, this defines a model architecture that consists of four
convolutional layers, a transformer layer and fully connected layers. The model takes
an input sensor, processes it through the defined layers then produces an output
sensor. The same loss function, as used for the CNN (eq:4.1), was used. The optimal
hyperparameters were determined using GridSearch and cross-validation and were as
follows: 200 epochs, 8 hidden neurons in the first two and 16 hidden neurons in the
third and fourth layers with a kernel size of 3. The model including the architecture
is shown in Figure 4.4b.

(a) Architecture of CNN model (b) Architecture of CnnTrans (CnnTrans)
model
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4.4 Results

The following section describes the results of applying the models to the test data
set.

Using the training set as input data, the Multiple Linear Regression (MLR) model
yields the following equation:

y = −2.33 − 0.10 ∗ X1 + 0.01 ∗ X2 + 0.02 ∗ X3 + 0.01 ∗ X4 + 0.01 ∗ X5 − 0.02 ∗ X6

− 0.02 ∗ X7 − 0.01 ∗ X8 + 0.02 ∗ X9 + 0.11 ∗ X10

When evaluating with the test data, the model achieves a RMSE of 7.5753, a MAE of
3.7731 and a R2 of 0.009257. The residuals as well as the predicted values versus
the true values are plotted in Figure 4.5. It is clear that the model makes the most
predictions close to 0, as can be seen in Figure 4.5b. It has the biggest problems
with correctly predicting the values that fall further towards the extremes. The red
line shows how the points should lie in the optimal case. This finding can also be
seen in Figure 4.5a. Since most of the predictions are close to 0, the model therefore
makes the largest errors in this area and shows the largest residuals.

(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.5: Multiple Linear Regression (MLR)

To understand the individual relationships between each independent variable and the
dependent variable, plots were created. The plots of all independent variables appear
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to be very similar. Figure 4.6 shows X1 versus the true difference as an example.
The other plots of the independent variables are attached in the appendix.

Figure 4.6: Independent variable X1 to true difference in test data set

The plots show a weak linear trend, with the slope being slightly positive. This
suggests that an increase in X1 leads to an increase in the true difference. However,
the range of X1 values shows a tendency to underestimate by more than 100 in the
lower range, and overestimate by about 25 to 50 in the upper range, even with a
few outliers from 75 to 100. There is also different scatter with the deviation. The
higher the values are, the lower the deviation gets.

Since the plots of the independent variables appear to be similar, Variance Inflation
Factors (VIFs) were calculated to assess multicollinearity among the independent
variables. The results showed that all of the VIFs were significantly high, suggesting
that multicollinearity was a problem. This indicates that these variables are highly
correlated with each other, which can make it difficult to estimate their individual
effects on the dependent variable. To address the problem of multicollinearity, the
average of each adjacent pair of variables was calculated. This resulted in five new
variables, which were then used as the explanatory variables in a new Multiple
Linear Regression model (MLR2). The following equation was used to represent
the new model:

y = −2.33 − 0.11 ∗ X1 + 0.06 ∗ X2 − 0.02 ∗ X3 + −0.06 ∗ X4 + 0.16 ∗ X5
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The data were thus re-trained with the new model and the difference predicted for
the test data. The model achieved a RMSE of 7.5737, a MAE of 3.7586, and a R2

of 0.009206. Figure 4.7b shows that the model still has a tendency to predict the
values close to 0. The largest residuals appear also in those cases and seem to get
smaller when the predicted difference is larger, with some outlier. This can be seen
in Figure 4.7a.

(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.7: Adapted Multiple Linear Regression (MLR2)

VIFs were also calculated for this model, which were also significantly high. To
address the issue of multicollinearity, a third variant of the original MLR model was
created. In this model, the variable with the highest VIF was removed iteratively
until all VIFs were below the threshold of 10. This procedure resulted in a model
with only one independent variable, namely:

y = −2.41 + 0.03 ∗ X10

The new Univariate Linear Regression (ULR) achieves a RMSE of 7.5750, a MAE
of 3.7613, and an R2 value of 0.007778. Figure 4.8a plots the residuals against the
predicted differences. Figure 4.8b shows the true difference versus the predicted
difference. In both plots the remaining problem can be seen.
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(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.8: Univariate Linear Regression (ULR)

(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.9: Polynomial Regression (PR)

If additional second degree polynomial terms are allowed to the ULR model, the
performance of the model can be slightly improved. The resulting Polynomial
Regression (PR) gives a RMSE of 7.5774, a MAE of 3.7888 and a R2 of 0.01019. The
equation of the PR model is the following:
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y = −0.20 + 770.15 ∗ X10 + 428.81 ∗ X2
10

Figure 4.9b shows that the model is able to predict higher values for the predicted
difference when the true difference is high. This results in a more accurate residual
plot. Figure 4.9a shows that when the predicted difference is higher, the residuals
get smaller with few outliers. However, when the predicted difference is lower, the
residuals tend to be more negative.

The simple CNN model achieves a RMSE of 7.4899 and a MAE of 3.6018. Figure
4.10a shows that the highest residuals appear in the range of the predicted difference
around 0. If the model predicts higher values, the residuals tend to be in the negative
range and are relatively accurate. The predicted differences have a larger scatter and
are not centered as strongly around 0 as with other models. This is also visible in
Figure 4.10b, which shows the true and predicted values.

(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.10: CNN

The proposed CnnTrans model, which combines four CNN layers with a transformer
layer, achieves a RMSE of 7.5080 and a MAE of 3.6052. Figure 4.10 shows the
comparison between the predicted values and the true values, as well as the residuals.
Again, the largest deviations are in the direction of the extremes. One advantage of
this model is that the predictions are no longer so strongly centered around the value
0 and the tendency toward larger values is stronger than in the previous models.
When comparing the CNN with the CnnTrans model, it can be seen that the CNN
tends to predict in the negative range, while the CnnTrans tends to predict in the
positive range.

Table 4.2 shows the comparison of the true values with the predicted values. It also
outlines the difference (bias) between them as a Five-Number summary of the models:
the Multiple Linear Regression (MLR), the adapted Multiple Linear Regression
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(a) Predicted Difference vs Residuals (b) True Difference vs Predicted Difference

Figure 4.11: CnnTrans

(MLR2), the Univariate Linear Regression (ULR), the Polynomial Regression (PR),
the CNN and the CnnTrans model. The so-called bias in the following refers to the
absolute difference between the true values (ytrue) and the predicted values (ypred).

MLR MLR2 ULR
ytrue ypred bias ypred bias ypred bias

count 598578 598578 598578 598578 598578 598578 598578
mean -0.740 -0.067 3.773 -0.067 3.759 -0.062 3.761
std 7.531 0.610 6.569 0.539 6.575 0.559 6.575
min -112.000 -7.369 0.000 -1.111 0.001 -1.159 0.002
25% -2.000 -0.484 0.766 -0.450 0.761 -0.444 0.759
50% 0.000 -0.135 1.707 -0.134 1.685 -0.117 1.687
75% 2.000 0.246 3.610 0.196 3.580 0.211 3.581
max 90.000 3.709 111.183 3.027 111.248 3.159 111.228

PR CNN CnnTrans
ytrue ypred bias ypred bias ypred bias

count 598578 598578 598578 598578 598578 598578 598578
mean -0.740 -0.080 3.789 0.004 3.602 -0.010 3.605
std 7.531 0.728 6.562 1.065 6.567 1.084 6.586
min -112.000 -0.548 0.001 -54.808 1.287 -22.904 0.000
25% -2.000 -0.494 0.608 0.001 0.969 0.000 0.986
50% 0.000 -0.311 1.548 0.001 1.466 0.000 1.447
75% 2.000 0.002 3.546 0.200 3.194 0.001 3.136
max 90.000 8.629 111.452 21.338 112.033 44.611 112.001

Table 4.2: Five-Number-Summary of all models
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The true difference between the wearable and the ECG is distributed in a range of
-112 to +90 beats. The predicted difference from the two Deep Learning models
(CNN and CnnTrans) tend to center around 0 with a mean of 0.004 and -0.010 resp
and a range of [-54.8; 21.4] and [-22.9;44.6] resp. Although these values seem to be
small, they are still better than those of the regression models, which have a smaller
range, namely [-7.4; 3.7] for the MLR, [-1.1; 3.0] for the MLR2, [-1.2; 3.2] for the ULR
and [-0.1; 8.6] for the PR. As forementioned before, the CNN model tends to predict
values more likely in the negative range while the CnnTrans tends to predict more
likely in the positive range. However, all models do not show very good results since
an accurate prediction seems to be very difficult for all of them. For this reason, we
allow the model a tolerance range of ± 3 beats in which the predictions are seen
as correct and accurate. There are some studies which discuss the boundaries for
such a tolerance range for HR measurements, but all authors admit, that further
research has to be done in that area. Khan et al. [75], the CTA [10], Haynie et al.
[62] and Nelson et al. [106] set the boundary to ± 10 beats or less, since their study
found that a difference of 10 bpm or less between two measurements is considered to
be clinically insignificant. However, we tightened the limits to get more stringent
and accurate values. Since the users should be informed of deviations later, the
tolerance range should be as small as possible. Table 4.3 shows the results of accurate
measurements relative to the predictions of this model.

within range ± 3
MLR 70.14%
MLR2 70.55%
ULR 70.51%
PR 69.74%
CNN 72.09%
CnnTrans 72.09%

Table 4.3: Amount of accurate predictions (± 3) for each model

The CNN and the CnnTrans have the best score by predicting 72.09% correct. However
the CNN predicts 431494 out of 598578 cases correct, while the CnnTrans predicts
431486 out of 598578 cases correct within the range. All regression models seem to
have more problems in predicting correct values even with a tolerance range of 3
beats.

When dividing the measurements of all models into the four predefined intensity
ranges, it can be seen that the intensity ranges have an influence of the size of the
bias. Table 4.4 shows the relative number of cases where the bias occur. When using
the MLR, there are 17 windows which have a larger bias than 100. This means that
the true difference and the predicted difference of the model differ more than 100.
And out of those 17 windows, 76.47% occur in the minor intensity range.
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bias > high moderate light minor absolute number
100 0.00 5.88% 17.65% 76.47% 17
90 62.35% 1.18% 3.53% 32.94% 85

MLR 80 67.34% 0.50% 3.52% 28.64% 199
70 81.49% 1.21% 2.01% 15.29% 497
60 70.29% 17.01% 1.54% 11.17% 976
50 59.99% 25.61% 3.15% 11.25% 1812
100 0.00 5.88% 17.65% 76.47% 17
90 63.74% 1.10% 3.30% 31.87% 91

MLR2 80 67.16% 0.49% 3.43% 28.92% 204
70 81.36% 1.20% 2.00% 15.43% 499
60 70.52% 16.68% 1.54% 11.26% 977
50 59.63% 26.22% 3.05% 11.10% 1838
100 0.00% 5.88% 17.65% 76.47% 17
90 63.74% 1.10% 3.30% 31.87% 91

ULR 80 67.16% 0.49% 3.43% 28.92% 204
70 81.33% 1.20% 2.01% 15.46% 498
60 70.55% 16.66% 1.53% 11.25% 978
50 59.66% 26.24% 3.05% 11.05% 1837
100 0.00% 5.88% 17.65% 76.47% 17
90 60.71% 1.19% 3.57% 34.52% 84

PR 80 66.16% 0.51% 3.54% 29.80% 198
70 81.33% 1.20% 2.01% 15.46% 498
60 70.91% 16.46% 1.52% 11.11% 990
50 60.60% 25.32% 3.01% 11.07% 1825
100 5.26% 5.26% 15.79% 73.68% 19
90 54.43% 1.27% 3.80% 40.51% 79

CNN 80 67.16% 0.50% 3.48% 28.86% 201
70 80.89% 1.22% 2.24% 15.65% 492
60 68.87% 17.53% 1.55% 12.06% 970
50 58.34% 25.97% 3.34% 12.35% 1798
100 5.26% 5.26% 15.79% 73.68% 19
90 55.56% 1.23% 3.70% 39.51% 81

CnnTrans 80 67.00% 0.50% 3.50% 29.00% 200
70 81.14% 1.22% 2.03% 15.62% 493
60 69.83% 16.70% 1.57% 11.90% 958
50 58.21% 25.86% 3.22% 12.71% 1802

Table 4.4: Percentage of predictions that differ more than ’bias’

All models have the greatest difficulty in making good predictions in the high range.
Exceptions to this are the cases where the largest deviations (>100 beats) occur.
These occur mainly in the minor intensity range. The CNN model shows the smallest
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number of cases (1798) where the predictions deviate by more than 50 beats.

Even with the tolerance range of ±3 beats, the accuracy of the predictions are not
satisfying for a sufficient valid prediction. Therefore, the intention now is to at least
elicit the times when the HR measurement of the wearable deviates strongly in order
to inform the user of this strong deviation. Since the two Deep Learning models
outperformed the Linear Regression models, further investigations will be done using
those two models.

4.4.1 Development of a Warning System

Although the predictions were not accurate enough to offer a real-time "correction"
of HR streams, wider bounderies provide greater accuracy and thus the opportunity
to develop a system that can detect large deviations. Thus, the next step is to
develop a system that alerts users when there is a significant difference between the
measured heart rate and the actual heart rate, indicating a possible measurement
error. Therefore it is needed to define a threshold, which indicates the range from
which a PPG measurement is to be regarded as not acceptable. From the previous
literature research, a recommendation of ± 10 beats as a validation limit has emerged
[10, 62, 75, 106]. Thus, all PPG windows that have a true difference from the ECG of
more than 10 beats are considered as ’inacceptable’, as shown in Figure 4.12. For
the remainder of this thesis, the absolute true difference will be referred to as ytrue,
while the predicted difference will be referred to as ypred.

Figure 4.12: Sketch of Classification of PPG window

Now a threshold value (τ) is introduced that applies to the magnitude of the predicted
value. The larger the model predicts the value, the more likely the model is to believe
that the measurement from the wearable on the ground truth is off at that moment.
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• If the predicted value ypred ≤ τ , the wearable assumes that the window does not
deviate much from the ground truth and so the PPG measurement is satisfying.

• If the predicted value ypred > τ , the wearable assumes that the window deviates
strongly from the ground truth and so the PPG measurement is not satisfying.

Figure 4.13 shows the structure of the confusion matrix, while Table 4.5 depicts the
confusion matrix itself. All windows that are classified as an unacceptable measure-
ment due to an elevated ytrue are considered as non-satisfying. The performance of
the model depends on how many unacceptable cases the model correctly detects as
not satisfying (= True Negative) without incorrectly classifying too many acceptable
cases as not satisfying (= False Negative).

ytrue ≤ 10 ytrue > 10
acceptable inacceptable

ypred ≤ τ True Positive False Positive
satisfying TP FP
ypred > τ False Negative True Negative

not satisfying FN TN

Table 4.5: Confusion Matrix

Figure 4.13: Sketch of Confusion Matrix

After preliminary tests, ranges of possible values for τ = [10, 20, 25, 30, 31, 32, 33,
34, 35, 40] are defined. The optimal values can be determined based on the accuracy
of the Performance (Perf) capture 4.2.
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Performance (Perf) = TN

TN + FN
∗ 100 (4.2)

CNN CnnTrans
τ TN FP FN TP Perf TN FP FN TP Perf
10 348 50998 255 546977 57.71 500 50846 314 546918 61.43
20 16 51330 3 547229 84.21 19 51327 18 547214 51.35
25 8 51338 0 547232 100.00 6 51340 5 547227 54.55
30 6 51340 0 547232 100.00 3 51343 2 547230 60.00
31 6 51340 0 547232 100.00 2 51344 1 547231 66.67
32 6 51340 0 547232 100.00 2 51344 0 547232 100.00
33 6 51340 0 547232 100.00 2 51344 0 547232 100.00
34 6 51340 0 547232 100.00 1 51345 0 547232 100.00
35 6 51340 0 547232 100.00 1 51345 0 547232 100.00
40 6 51340 0 547232 100.00 1 51345 0 547232 100.00
45 5 51341 0 547232 100.00 0 51346 0 547232 -
50 1 51345 0 547232 100.00 0 51346 0 547232 -

Table 4.6: Perf of CNN and CnnTrans

Table 4.6 shows the results of this investigation when applying this on the results of
the CNN and CnnTrans. The CNN model is able to detect more True Negative (TN)
cases even with a small τ . The performance of only 25 gives a 100% certainty that
the current window deviates from the ground truth by more than 10 beats and is
detected as inacceptable. In comparison, the CnnTrans needs a threshold of 32 or
more to get a 100% certainty. With a threshold of 25, the probability of detecting a
true measurement error is only about 55%.

Linear regression models were not able to predict values higher than 10, which is a
limitation for developing a warning system. This is because warning systems need to
be able to predict values that are outside of the normal range in order to provide
early warning of potential problems. In contrast, the CNN model was able to predict
higher values with good performance. This suggests that the CNN model is the best
choice for developing a warning system.

By setting a threshold τ , it depends on the size of τ at which point the warning
system steps in and classifies the measurement as not satisfactory. Figure 4.14 shows
the structure of the process used to develop the warning system. A soon as ypred

exceeds τ1, the user gets a ’pre-warning’, which states that this measurement has
a high potential to be unacceptable. As soon as ypred exceeds τ2, the user gets a
warning which gives a high probability of an error.
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Figure 4.14: Sketch of warning system

According to the previous investigations, the thresholds 20 and 25 show the most
plausible values for being taken as thresholds when using the CNN model. If the
value exceeds 20, the model can say with a confidence of 84% that this measurement
is not satisfactory. If the value exceeds 25, there is a 100% confindence the value is
inaccurate.

4.4.2 Evaluation of the Warning System

The CNN model was originally trained on a dataset of heart rate data collected from
a specific wearable, namely Garmin venu2s. However, the goal of the warning system
was to be applicable to different wearables. To test the generalizability of the model,
it was re-trained on a new dataset of heart rate data collected from the same study,
but using a different wearable device (Polar Verity Sense). The new dataset was
recorded at the same frequency (1 Hz) and used the same protocol as the original
dataset. The data was also preprocessed and synchronized with the gold standard in
the same way.

The CNN model was then applied to the new dataset and the same calculations were
performed to evaluate the different thresholds. The results of these calculations are
shown in Table 4.7. The results show that the CNN model is able to generalize to
different wearable devices and still achieve high accuracy. The new data set (Polar)
shows similar performance values to those of the original data set (Garmin).

Two thresholds, τ1 = 20 and τ2 = 34, were found to work reasonably well for both
models. The CNN model correctly detects about 84% of unacceptable measurements
in the original dataset when the first threshold, τ1, was set to 20. This threshold can
be considered a pre-warning level. For the new dataset, the model correctly detects
about 86% of the unacceptable measurements at the same threshold value. When
the second threshold, τ2, was set to 34, the model detected 100% of all inacceptable
measurements in both data sets. This threshold value can be seen as a reliable
warning for measures that are substantially off.
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Polar Garmin
τ TN FP FN TP Perf Perf
10 419 34830 277 468400 60.20 57.71
20 67 35182 11 468666 85.90 84.21
25 29 35220 2 468675 93.55 100.00
30 11 35238 1 468676 91.67 100.00
31 9 35240 1 468676 90.00 100.00
32 5 35244 1 468676 83.33 100.00
33 3 35246 1 468676 75.00 100.00
34 3 35246 0 468677 100.00 100.00
35 2 35247 0 468677 100.00 100.00
40 1 35248 0 468677 100.00 100.00
45 0 35249 0 468677 - 100.00
50 0 35249 0 468677 - 100.00

Table 4.7: Performance of CNN on Polar Data in comparison to the original Garmin
Data
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5 Discussion

The first part of this thesis examined the validity of HR measurements made with
wearable devices, specifically addressing the question when large measurement
errors are likely to occur. When talking about the term "validity", it must be
emphasized that there is no official framework defining when a device is to be
considered valid or not. Testing standards are also not transparent and remain
unknown to the consumer. Each manufacturer decides for itself whether the validation
of a wearable meets medical certifications. This leads to a large heterogeneity of
validation protocols. According to Mühlen et al [102], the assessment of validity
should be performed by independent institutions. The constantly growing number
of new wearables makes it almost impossible for scientific institutions to keep up
with the latest developments. This is also criticized by Carrier et al. [27] in their
paper. Therefore, Mühlen et al. [102] propose a common framework for assessing
validity that can be used by both manufacturers and research institutions. Studies
to determine validity should evaluate the instrument using a precise measurement
criterion in a relevant sample and under conditions that reflect expected use in
the real-world. The evaluation should be properly recorded and described in an
understandable manner. Back in 2018, a preliminary framework was presented by the
Consumer Technology Association [124], however it did not include recommendations
for long-term HR monitoring under field conditions. Scientific evidence for these
proposed guidelines was also not provided. In the future, as of May 2025, all wearables
must comply with medical device regulations, such as CE marking in Europe.

Another important challenge in assessing the validity of wearables is that studies that
investigate them employ different study designs and methods, reducing replicability
and comparability. Many studies use an ECG measurement as a comparative method
or ground truth, but some studies resort to chest straps or pulse oximeters instead
[23, 41, 45, 147]. These methods may again have some error and are thus only
suboptimal methods of comparison, and the results of these studies should be
interpreted with caution [106].

Both a literature review and an analysis of real-world data revealed that wearable
devices have the most problems in high-intensity ranges [13, 19, 24, 40, 43, 58, 68,
125, 153, 161]. Although this difference regarding exercise intensity could not be
found in all studies [41, 136, 145, 170], the investigation of real-world data confirmed
this. This findings raise the question of whether the increased HR and the resulting
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faster changes in blood volume in the vessels, are the reason for those problems or
whether there are other reasons for the deviations. One hypothesis is that the blood
volume changes in the vessels occur too fast for the wearables to capture. However
the measurement problems could also occur because of the increased movements
the subject makes during the measurement. Nelson et al. [106] pointed out that
activity intensity may be less important for accuracy than the amount of irregular
wrist movements during physical activity. These movements tend to be higher during
intense physical activity and may cause the sensors to slip or lose contact with
the skin, resulting in motion artifacts. Various authors considered this possibility
as well and also believe that these motion artifacts are the biggest problems for
decreased accuracy. Both Navalta et al [105], Schäck et al [133], Essalat et al [46],
and Zhang et al [176] suggest that higher intensity means more motion. They
see the increased arm movements as the main factor for motion artifacts, which
then lead to erroneous measurements. Few studies have compared the accuracy of
wearable devices for measuring HR during high-intensity physical activity with a lot
of arm movements (e.g., running) to those with less arm movements (e.g., cycling).
Some devices performed better during running, while others performed better during
cycling [113]. Reddy et al. [125] discovered that validity decreases at high intensity
ranges with even a lack of wrist movement. However, motion artifacts can also be
caused by abnormal blood pressure changes if the wearer has hypertension [46].

Ambient light, in addition to motion artifacts, could also affect the measurement.
While many studies conduct their investigation in a laboratory-like environment
[23, 41, 48, 58, 68, 125, 145, 147, 153, 160] the influence of ambient light may be higher
when training outdoors. Recent research has challenged the validity of laboratory
studies, as they are conducted in controlled and artificial environments that may
not reflect the real-world experiences of participants. Consumers use wearables in
natural environments where physiological and psychological situations may occur
that may not be replicated and captured in the laboratory [105, 106, 132]. In addition
to motion artifacts and ambient light, other factors such as ambient temperature,
melatonin concentration, skin pigmentation, and body hair may also play a significant
role in the real-world measurement accuracy of wearables [44, 48, 58, 102, 105, 151,
154, 160, 176].

French et al. [51] do not address measurement with fitness wearables due to the lack
of valid research. They also describe a lack of agreement in the literature at both
submaximal and maximal exercise intensities, which makes data interpretation more
difficult. They attribute this to the many dynamic and multidimensional physiological
conditions that can affect wearable measurements, such as rapid changes in intensity,
body position, the psychological and physical environment, individual training goals
and the sport being performed [22, 51]. Authors therefore recommend being aware
of the limitations of wearables and only use them in conjunction with additional aids
such as a chest strap or accelerometry [24]. There is some research showing that the
accuracy of wearables is better when combined with accelerometry [74, 112, 160].
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Overall, it is important to view high-range HR measurements with caution. As
mentioned earlier, prolonged high HR is a risk factor for CVD. Physical activity can
reduce HR and therefore help to prevent CVD and other chronic diseases. Accurate and
valid HR measurements are needed to individualize physical training appropriately
[160]. This is true in both the medical and health fields, as well as in sports. One of
the biggest challenges in exercise design is to find the right balance between exertion
and recovery. One way to do this is to measure the internal responses to exercise,
such as HR. Heart rate can be used to calculate relative intensity ranges, which can
then be used to plan appropriate training. High-intensity exercise requires longer
rests to allow for full cardio-autonomic recovery. Low-intensity exercise requires up
to 24 hours of rest, while moderate-intensity exercise requires 24-48 hours of rest. As
fitness improves, the stress-recovery adaptation cycle becomes shorter. Heart rate
monitoring is a valuable tool for understanding and improving individual fitness.
It can be used to control intensity and effectively design and vary a training plan.
Monitoring can improve fitness, recovery time and overall performance.[51, 100, 146].
Valid and accurate measurements are therefore important to give correct advices and
to not overcharge or underchallenge an individual.

Most wearables use proprietary algorithms to convert PPG signals into HR mea-
surements and estimates. These algorithms are not transparent to outsiders and
are regularly updated. It is also problematic that most authors do not specify the
firmware version of the wearable device used in their studies. This can lead to dis-
crepancies between studies that use the same device but different firmware versions,
as the firmware can affect the accuracy of the device’s measurements. Lack of repro-
ducibility can make it difficult to draw reliable conclusions from research on wearable
devices. Additionally, the rapid pace of development in the wearables industry means
that devices used in studies may quickly become outdated. This is because wearable
devices are constantly being updated with new features and algorithms, which can
improve their accuracy. As a result, research on wearable devices may always lag
behind the latest technological developments [106, 167]. One way to address this
issue is to conduct research using a different design. For example, researchers could
conduct longitudinal studies that track the same participants over time as they
use different wearable devices. Although people also become more different from
themselves over time, this option would still be the most comparable. This would
allow researchers to compare the accuracy of different devices and firmware versions
over time. Another way to address this issue is to develop standardized protocols
for testing the accuracy of wearable devices. This would ensure that all studies are
conducted using the same methods, which would make it easier to compare results
from different studies. Ultimately, the challenge of keeping up with the rapid pace of
technological advancement in the wearables industry is a significant one. However,
by using different research designs and developing standardized protocols, researchers
can help to ensure that research on wearable devices is as reliable and up-to-date as
possible.
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Classification versus (vs) Regression

A key question at the beginning of the thesis was how to define a measurement
error. One possibility was to manually classify windows as "on" or "off" in advance
and use this data as a supervised method to train the model. "On" means that
the measurement of the wearable is correct, while "off" corresponds to an incorrect
measurement. However, this method is time-consuming and not transparent, since
the classification is done manually and arbitrary. Possible options could be to
compare the 10 second window regarding the RMSE and classify to a certain arbitrary
threshold. Another approach could be to compare the absolute differences between the
measurements and set a threshold for the distance. Both approaches yield the same
problem: setting the threshold is arbitrary and, therefore, objective. Additionally,
the classes should be even, which is hard to find methods that achieves this without
losing too much data. Therefore the approach of this thesis is a prediction method.
The idea is to first get a prediction from the model, and then use a threshold to
determine whether the current measurement should be classified as "on" or "off".
This led to the development of a warning system. If the model’s prediction is high
and exceeds a certain threshold, it can be assumed that the measurement is most
likely wrong. The warning system distinguishes between two different warning levels,
depending on the level and probability of the deviation.

Model Selection

Finding a suitable and ’best’ model was very time-consuming and computationally
intensive. The model had to be accurate enough to predict HR, but it should also
generalize well to external data and other wearables. A more complex model can
represent the underlying relationship more accurately, but it is also more likely to
overfit the training data. Overfitting occurs when the model learns the noise in
the training data instead of the underlying relationship. This can lead to poor
performance on new data. The goal is to find a model with low variance and low
bias. Variance describes the error caused by overfitting, while bias describes the
error introduced by the assumptions of the algorithm chosen to build the model. A
model with low variance will have a small error on the training data, but it may
have a large error on new data. A model with low bias will have a large error on
the training data, but it may have a small error on new data. The model chosen
in this study had slightly reduced performance on the training set, but it had the
best performance on subsequent test sets. This suggests that the model has low
variance and low bias, and is therefore generalizable to new data [51]. However,
neural networks are known to be data-dependent. This means that their performance
can vary depending on the training data used. Additionally, neural networks are
often prone to overfitting. This can lead to unstable predictions and is therefore still
questionable in real-world applications [16]. For that, the approach was performed
on a data set with a different wearable. Nevertheless, there is a possibility that the
thresholds may have been overfitted to these two data sets. Further research with
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additional data sets is needed to elicit better and more generealizable thresholds.

For data preparation, the HR measurements of the ECG and the wearable were
used. All missing values were removed from the two measurements, and obvious
errors and outliers were removed from the ECG. The ECG was used as the ground
truth, therefore, it was important to have it as clear and error-free as possible. One
option would have been to fill in the errors with other data, such as the mean or
median. However, this was not done because it would have introduced fictional
data and altered the ground truth. The PPG measurement was compared one-to-one
with the ECG, so it was important to keep the PPG measurement as unaltered as
possible. Outliers in the PPG measurement were not removed so as not to embellish
the measurements and to take them exactly as they occur in real life.

The data was then split into windows. The size of the window is an important
parameter that can affect the performance of many data mining tasks, such as
classification, clustering, anomaly detection and time series prediction. The optimal
window size can be difficult to determine, and is often specified by experts or based
on experience. If the window size is too small, important patterns in the data may
be missed. If the window size is too large, important patterns may be distorted or
averaged out. In this work, different window sizes were suggested by experts. The
window sizes with the best performance were used for further processing.

Deep Learning Approach

In this work, two deep learning models were compared: a CNN model and a CnnTrans
model. The CnnTrans model was expected to outperform the CNN model due to the
advantages of transformers, such as their ability to capture long-range dependencies,
such as fluctuations and dynamics over time, and their scalability. However, the
CNN model showed slightly better performance. The results of this study suggest
that the CNN model is a better choice for detecting measurement errors in this
particular dataset. It is important to note that the performance of the models may
vary depending on the dataset and the specific application. A possible reason why
the CNN model outperformed the CnnTrans model could be the size of the dataset.
The dataset may not have been large enough to fully exploit the advantages of
transformers. Also, the CNN model may have been better at capturing the specific
features of the dataset that were relevant to detecting measurement errors. What is
more is that the CNN model may have been simpler and easier to train, potentially
resulted in a more accurate model. Further research is needed to determine the best
model for detecting measurement errors in different datasets and applications.
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In addition to comparing the results of the models, the performance of the calculation
with new values was also evaluated. This is important because the warning system
is intended to inform the user in a timely manner when measurement errors occur.
To accomplish this, the test data was passed to the model one at a time and the
time it took for the model to calculate the appropriate output was calculated. For
the simulation, 10,000 values (= seconds) were used. Again, the CNN model showed
slightly better performance, with a mean of 0.1038 seconds. The CnnTrans model has
a mean of 0.1183 seconds. The remaining values for analysis can be seen in Table
5.1.

Computation Time CNN CnnTrans
Minimum 0.0622 0.0709
First Quartile 0.0869 0.0935
Median 0.0961 0.1072
Third Quartile 0.1132 0.1319
Maximum 0.9658 1.6532
Mean 0.1038 0.1183
Standard Deviation 0.0305 0.0428

Table 5.1: Five Number Summary of Computation Time of CNN and CnnTrans in
seconds

Purpose and Limitation of the used approach

The increased interest of research towards wearables and the resulting rapid growth
of data comes the idea of analyzing these data with Machine Learning and Deep
Learning to generate further knowledge. Using these techniques, the goal is to adapt
and improve HR estimates from the wearables. While Alharbi et al [5] writes that HR
data are considered non-stationary, meaning that they are constantly changing and
therefore cannot be predicted or modeled some research has already been done and
algorithms created to classify or predict HR data. However, these studies focused
on either processing the raw PPG signal with their own algorithms to estimate
HR, attempting to classify heart disease using ECG measurements, or using higher
frequency PPG signals [18, 77, 104, 108, 139, 176]. The goal of this work was to
validate existing HR measurements while keeping the calculation as simple as possible.
This was done in order to require little preprocessing time and battery power, while
still generating accurate information with the simple model. The intended outcome
was to provide immediate feedback to the end user in the event of significant deviations
or measurement errors. This approach should be easy to implement on different
wearables, making it device-independent and generalizable to other applications.
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The disadvantage of this approach is that it does not consider most of the information
that the PPG signal provides. The PPG signal is a rich source of information about
HR, however, it only uses a small portion of this information. This approach is based
on an algorithm developed by the device manufacturer and is not visible to outsiders.
This means that it is not possible to know exactly how the algorithm works or how
it is making its predictions. It also draws on data collected at a frequency of 1 Hz.
This means that the data is only sampled once per second. If the data were collected
at a higher frequency, more information could be extracted from the temporal course
of the signals. However, these options are omitted because the model should be
kept as simple and as general as possible. The goal of this approach is to develop a
model that can be used with a variety of wearable devices. If the model were too
complex, it would not be able to run on all devices. This approach deals with a
real-world problem and with the output displayed by the wearable. The PPG signal
is not accessible on the wearable because it is already processed in advance.

Another important point is that the model shows a large number of False Positive (FP)
cases for both data sets (Garmin and Polar). At the two thresholds (τ1 = 1, τ2 = 2)
leads to a very high sensitivity and a very low specificity. The formulas for sensitivity
and specificity are as follows:

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

The exact values can be found in the table 5.2. The sensitivity indicates how many
of the false measurements are actually detected by the model. A high sensitivity
means a high certainty of detecting false measurements. The specificity indicates
the probability that correct measurements are actually recognized as correct by the
model. It is a measure of how high the proportion of correct measurements is, which
are also recognized as correct.

data set threshold sensitivity specificity

Garmin 20 0.9999 0.0003
34 1 0.0001

Polar 20 0.9999 0.0019
34 1 0.0001

Table 5.2: Sensitivity and Specificity of Data Sets

A high sensitivity and a low specificity means that the model classifies many measure-
ments as incorrect, but they are actually correct. In the proposed CNN model, this
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low specificity is a major weakness. This should be revised and developed further,
since there are a large number of false positives.

In addition, it must be mentioned that the group of subjects consists of healthy
patients, but also 11 patients who took HR influencing drugs. The HR records of
these patients could influence the measurements and make it difficult for the model
to make appropriate predictions. This must be taken into account when analyzing
the results. On the other hand, CVD patients are not excluded from the possibility
of using this model in the future.
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6 Future work

The presented CNN model has the potential to provide the foundations for a warning
system to inform users of very large deviations from the gold standard. The model
works well on the two datasets presented, achieving up to 100% confidence in
identifying inadequate measurements. However, the model is not yet perfect, as the
accuracy of the predictions is not always successful.

Follow-up research should focus on refining and improving the input data, such as
frequency and format, to make better predictions thereby predicting measurement
inaccuracies. It may be possible to work directly with the PPG signal instead of using
the HR values issued by the wearable device. This would retain more information
from the signal and allow the data to be processed at a higher frequency.

In addition, an important point for future work is to address how the newly obtained
information and results from the model are communicated to the end user. This area
in HDI has a lot of potential, but still requires a lot of research: what information
is important to the end user? What kind of communication is sufficient, and how
much is too much? How do they react to the thresholds?

Depending on the model, it is possible to give warnings to the end user promptly or
with a certain time delay. There would also be the possibility to count the occurrence
of a measurement error and return the total sum to the end user at the end of
the training, along with the summary. At the same time, the warnings could be
announced via vibration or sound immediately upon occurrence. Further research is
needed in this area.
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7 Conclusion

Wearables have become increasingly popular in recent years, as they offer a convenient
and non-invasive way to monitor health metrics such as HR. However, the accuracy
of HR measurements from wearable devices can be affected by a number of factors.
Wearables show the most difficulties and inaccuracies especially in the high intensity
range. Although the manufacturers and companies of the wearables are constantly
trying to improve the HR estimates, many improvements are still needed.

In this thesis, two Deep Learning models and four Linear Regression models were
compared. One of the Deep Learning models based on a CNN architecture outper-
formed the other models. The CNN model can be used to detect the large deviations
and thus the occurrence of inacceptable measurements. It is trained on a dataset
of real-world HR measurements, and it can be used to inform and warn users about
large deviations from the gold standard. The model works well on two datasets
presented, achieving up to 100% reliability in detecting insufficient measurements.
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Figure 7.1: The remaining variables of the Multiple Linear Regression (MLR) model
I.

XXIII



BIBLIOGRAPHY

Figure 7.2: The remaining variables of the Multiple Linear Regression (MLR) model
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